Elliptic Integrals - 19.10 Relations to Other Functions

From testwiki
Revision as of 11:50, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.10#Ex1 ln ( x / y ) = ( x - y ) R C ( 1 4 ( x + y ) 2 , x y ) 𝑥 𝑦 𝑥 𝑦 Carlson-integral-RC 1 4 superscript 𝑥 𝑦 2 𝑥 𝑦 {\displaystyle{\displaystyle\ln\left(x/y\right)=(x-y)R_{C}\left(\tfrac{1}{4}(x% +y)^{2},xy\right)}}
\ln@{x/y} = (x-y)\CarlsonellintRC@{\tfrac{1}{4}(x+y)^{2}}{xy}

Error
Log[x/y] == (x - y)*1/Sqrt[x*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(Divide[1,4]*(x + y)^(2))/(x*y)]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10#Ex2 arctan ( x / y ) = x R C ( y 2 , y 2 + x 2 ) 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑦 2 superscript 𝑥 2 {\displaystyle{\displaystyle\operatorname{arctan}\left(x/y\right)=xR_{C}\left(% y^{2},y^{2}+x^{2}\right)}}
\atan@{x/y} = x\CarlsonellintRC@{y^{2}}{y^{2}+x^{2}}

Error
ArcTan[x/y] == x*1/Sqrt[(y)^(2)+ (x)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2))/((y)^(2)+ (x)^(2))]
Missing Macro Error Failure -
Failed [9 / 18]
Result: -1.5707963267948966
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: -2.498091544796509
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.10#Ex3 arctanh ( x / y ) = x R C ( y 2 , y 2 - x 2 ) hyperbolic-inverse-tangent 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑦 2 superscript 𝑥 2 {\displaystyle{\displaystyle\operatorname{arctanh}\left(x/y\right)=xR_{C}\left% (y^{2},y^{2}-x^{2}\right)}}
\atanh@{x/y} = x\CarlsonellintRC@{y^{2}}{y^{2}-x^{2}}

Error
ArcTanh[x/y] == x*1/Sqrt[(y)^(2)- (x)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2))/((y)^(2)- (x)^(2))]
Missing Macro Error Failure -
Failed [15 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10#Ex4 arcsin ( x / y ) = x R C ( y 2 - x 2 , y 2 ) 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arcsin}\left(x/y\right)=xR_{C}\left(% y^{2}-x^{2},y^{2}\right)}}
\asin@{x/y} = x\CarlsonellintRC@{y^{2}-x^{2}}{y^{2}}

Error
ArcSin[x/y] == x*1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2)- (x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [9 / 18]
Result: -3.141592653589793
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-3.141592653589793, 3.525494348078172]
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.10#Ex5 arcsinh ( x / y ) = x R C ( y 2 + x 2 , y 2 ) hyperbolic-inverse-sine 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(x/y\right)=xR_{C}\left% (y^{2}+x^{2},y^{2}\right)}}
\asinh@{x/y} = x\CarlsonellintRC@{y^{2}+x^{2}}{y^{2}}

Error
ArcSinh[x/y] == x*1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2)+ (x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [9 / 18]
Result: Complex[-1.7627471740390859, 0.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-3.6368929184641337, 0.0]
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.10#Ex6 arccos ( x / y ) = ( y 2 - x 2 ) 1 / 2 R C ( x 2 , y 2 ) 𝑥 𝑦 superscript superscript 𝑦 2 superscript 𝑥 2 1 2 Carlson-integral-RC superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arccos}\left(x/y\right)=(y^{2}-x^{2}% )^{1/2}R_{C}\left(x^{2},y^{2}\right)}}
\acos@{x/y} = (y^{2}-x^{2})^{1/2}\CarlsonellintRC@{x^{2}}{y^{2}}

Error
ArcCos[x/y] == ((y)^(2)- (x)^(2))^(1/2)* 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10#Ex7 arccosh ( x / y ) = ( x 2 - y 2 ) 1 / 2 R C ( x 2 , y 2 ) hyperbolic-inverse-cosine 𝑥 𝑦 superscript superscript 𝑥 2 superscript 𝑦 2 1 2 Carlson-integral-RC superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arccosh}\left(x/y\right)=(x^{2}-y^{2% })^{1/2}R_{C}\left(x^{2},y^{2}\right)}}
\acosh@{x/y} = (x^{2}-y^{2})^{1/2}\CarlsonellintRC@{x^{2}}{y^{2}}

Error
ArcCosh[x/y] == ((x)^(2)- (y)^(2))^(1/2)* 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10.E2 ( sinh ϕ ) R C ( 1 , cosh 2 ϕ ) = gd ( ϕ ) italic-ϕ Carlson-integral-RC 1 2 italic-ϕ Gudermannian italic-ϕ {\displaystyle{\displaystyle(\sinh\phi)R_{C}\left(1,{\cosh^{2}}\phi\right)=% \operatorname{gd}\left(\phi\right)}}
(\sinh@@{\phi})\CarlsonellintRC@{1}{\cosh^{2}@@{\phi}} = \Gudermannian@{\phi}
- < ( ϕ ) , ( ϕ ) < formulae-sequence italic-ϕ italic-ϕ {\displaystyle{\displaystyle-\infty<(\phi),(\phi)<\infty}}
Error
(Sinh[\[Phi]])*1/Sqrt[(Cosh[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cosh[\[Phi]])^(2))] == Gudermannian[\[Phi]]
Missing Macro Error Failure - Successful [Tested: 6]