Elliptic Integrals - 19.7 Connection Formulas
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.7.E1 | \compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi |
|
EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi
|
EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi
|
Failure | Failure | Error | Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
|
19.7#Ex1 | \compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k} |
|
EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k)
|
EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-2.220446049250313*^-16, -2.9198052634126777]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex2 | \compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}} |
|
EllipticK(- I*sqrt(1 - (k)^(2))/k) = k*EllipticK(sqrt(1 - (k)^(2)))
|
EllipticK[(- I*Sqrt[1 - (k)^(2)]/k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
19.7#Ex3 | \compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k} |
|
EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*EllipticE(k)
|
EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*EllipticE[(k)^2]
|
Failure | Failure | Failed [3 / 3] Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}
Result: .6e-9+.4691535424*I
Test Values: {k = 2}
... skip entries to safe data |
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-5.551115123125783*^-16, 0.46915354293820644]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex4 | \compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}} |
|
EllipticE(- I*sqrt(1 - (k)^(2))/k) = (1/k)*EllipticE(sqrt(1 - (k)^(2)))
|
EllipticE[(- I*Sqrt[1 - (k)^(2)]/k)^2] == (1/k)*EllipticE[(Sqrt[1 - (k)^(2)])^2]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
19.7#Ex5 | \compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}}) |
|
EllipticK(1/k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2))))
|
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-2.220446049250313*^-16, 4.313031294999287]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex5 | \compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}}) |
|
EllipticK(1/k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2))))
|
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
|
Failure | Failure | Error | Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
|
19.7#Ex6 | \compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k}) |
|
EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k))
|
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[2.9198052634126785, -3.7351946687866775]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex6 | \compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k}) |
|
EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k))
|
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2])
|
Failure | Failure | Error | Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
|
19.7#Ex7 | \compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right) |
|
EllipticE(1/k) = (1/k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
|
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}
Result: Complex[3.4500631209220436, -1.8829831432620088]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex7 | \compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right) |
|
EllipticE(1/k) = (1/k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
|
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}
Result: Complex[3.4500631209220436, -3.773902383124376]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex8 | \compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right) |
|
EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k))
|
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-1.1384238737361991, -2.262384972182541]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex8 | \compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right) |
|
EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k))
|
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-0.45287687829515355, -3.814134176668458]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.7#Ex19 | \incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}} |
|
EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2)))
|
EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]
|
Failure | Failure | Failed [300 / 300] Result: .1428695990-.263545696e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}
Result: .749290340e-1-.334629029e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.020142137049999537, -0.0010462389457662757]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.015860617706546204, -0.003938067237051424]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.7#Ex20 | \incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right) |
|
EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2)))
|
EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)])
|
Failure | Failure | Failed [300 / 300] Result: -.9970133474-.1125517221*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -2.257467281-.7782721018*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.3893501368763376, 0.20738614458301174]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.6710974690872284, 0.0060773305020283]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.7#Ex21 | \incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})} |
|
EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2))
|
EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2))
|
Failure | Failure | Failed [292 / 300] Result: .926834363e-2-.484444094e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -.130749569e-2-.277524276e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [298 / 300]
Result: Complex[0.013291772923717082, -0.006719909387202905]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.00953602334602252, -0.007394575555177196]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |