Elliptic Integrals - 19.5 Maclaurin and Related Expansions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.5.E1 | \compellintKk@{k} = \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} |
|
EllipticK(k) = (Pi)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity)
|
EllipticK[(k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Error | Successful [Tested: 3] |
19.5.E1 | \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} = \frac{\pi}{2}\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} |
|
(Pi)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(2)*hypergeom([(1)/(2),(1)/(2)], [1], (k)^(2))
|
Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*HypergeometricPFQ[{Divide[1,2],Divide[1,2]}, {1}, (k)^(2)]
|
Failure | Successful | Failed [3 / 3] Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}
Result: Float(infinity)+1.078257824*I
Test Values: {k = 2}
... skip entries to safe data |
Successful [Tested: 3] |
19.5.E2 | \compellintEk@{k} = \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{-\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} |
|
EllipticE(k) = (Pi)/(2)*sum((pochhammer(-(1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity)
|
EllipticE[(k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[-Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Failed [2 / 3] Result: Float(infinity)+1.343854231*I
Test Values: {k = 2}
Result: Float(infinity)+2.498348128*I
Test Values: {k = 3}
|
Successful [Tested: 3] |
19.5.E2 | \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{-\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} = \frac{\pi}{2}\genhyperF{2}{1}@{-\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} |
|
(Pi)/(2)*sum((pochhammer(-(1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(2)*hypergeom([-(1)/(2),(1)/(2)], [1], (k)^(2))
|
Divide[Pi,2]*Sum[Divide[Pochhammer[-Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*HypergeometricPFQ[{-Divide[1,2],Divide[1,2]}, {1}, (k)^(2)]
|
Failure | Successful | Failed [2 / 3] Result: Float(-infinity)-1.343854232*I
Test Values: {k = 2}
Result: Float(-infinity)-2.498348127*I
Test Values: {k = 3}
|
Successful [Tested: 3] |
19.5.E3 | \compellintDk@{k} = \frac{\pi}{4}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{3}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{(m+1)!\;m!}k^{2m} |
|
(EllipticK(k) - EllipticE(k))/(k)^2 = (Pi)/(4)*sum((pochhammer((3)/(2), m)*pochhammer((1)/(2), m))/(factorial(m + 1)*factorial(m))*(k)^(2*m), m = 0..infinity)
|
Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[Pi,4]*Sum[Divide[Pochhammer[Divide[3,2], m]*Pochhammer[Divide[1,2], m],(m + 1)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-0.08185805455243848, 0.4541460103381727]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.5.E3 | \frac{\pi}{4}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{3}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{(m+1)!\;m!}k^{2m} = \frac{\pi}{4}\genhyperF{2}{1}@{\tfrac{3}{2},\tfrac{1}{2}}{2}{k^{2}} |
|
(Pi)/(4)*sum((pochhammer((3)/(2), m)*pochhammer((1)/(2), m))/(factorial(m + 1)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(4)*hypergeom([(3)/(2),(1)/(2)], [2], (k)^(2))
|
Divide[Pi,4]*Sum[Divide[Pochhammer[Divide[3,2], m]*Pochhammer[Divide[1,2], m],(m + 1)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,4]*HypergeometricPFQ[{Divide[3,2],Divide[1,2]}, {2}, (k)^(2)]
|
Failure | Successful | Failed [3 / 3] Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}
Result: Float(infinity)+.6055280139*I
Test Values: {k = 2}
... skip entries to safe data |
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
|
19.5.E4 | \compellintPik@{\alpha^{2}}{k} = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{n}}{n!}\sum_{m=0}^{n}\frac{\Pochhammersym{\tfrac{1}{2}}{m}}{m!}k^{2m}\alpha^{2n-2m} |
|
EllipticPi((alpha)^(2), k) = (Pi)/(2)*sum((pochhammer((1)/(2), n))/(factorial(n))*sum((pochhammer((1)/(2), m))/(factorial(m))*(k)^(2*m)* (alpha)^(2*n - 2*m), m = 0..n), n = 0..infinity)
|
EllipticPi[\[Alpha]^(2), (k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], n],(n)!]*Sum[Divide[Pochhammer[Divide[1,2], m],(m)!]*(k)^(2*m)* \[Alpha]^(2*n - 2*m), {m, 0, n}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Error | Skipped - Because timed out |
19.5.E4 | \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{n}}{n!}\sum_{m=0}^{n}\frac{\Pochhammersym{\tfrac{1}{2}}{m}}{m!}k^{2m}\alpha^{2n-2m} = \frac{\pi}{2}\AppellF{1}@{\tfrac{1}{2}}{\tfrac{1}{2}}{1}{1}{k^{2}}{\alpha^{2}} |
|
Error
|
Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], n],(n)!]*Sum[Divide[Pochhammer[Divide[1,2], m],(m)!]*(k)^(2*m)* \[Alpha]^(2*n - 2*m), {m, 0, n}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*AppellF[1, , Divide[1,2], Divide[1,2], 1, 1]*(k)^(2)*\[Alpha]^(2)
|
Missing Macro Error | Failure | Skip - symbolical successful subtest | Skipped - Because timed out |
19.5.E5 | q = \exp@{-\pi\ccompellintKk@{k}/\compellintKk@{k}} |
(exp(- Pi*EllipticCK(k)/EllipticK(k))) = exp(- Pi*EllipticCK(k)/EllipticK(k))
|
(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]]) == Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]]
|
Successful | Successful | - | Successful [Tested: 1] | |
19.5.E7 | \lambda = (1-\sqrt{k^{\prime}})/(2(1+\sqrt{k^{\prime}})) |
|
lambda = (1 -sqrt(sqrt(1 - (k)^(2))))/(2*(1 +sqrt(sqrt(1 - (k)^(2))))) |
\[Lambda] == (1 -Sqrt[Sqrt[1 - (k)^(2)]])/(2*(1 +Sqrt[Sqrt[1 - (k)^(2)]])) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.5.E8 | \compellintKk@{k} = \frac{\pi}{2}\left(1+2\sum_{n=1}^{\infty}q^{n^{2}}\right)^{2} |
EllipticK(k) = (Pi)/(2)*(1 + 2*sum((exp(- Pi*EllipticCK(k)/EllipticK(k)))^((n)^(2)), n = 1..infinity))^(2)
|
EllipticK[(k)^2] == Divide[Pi,2]*((1 + 2*Sum[(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None]))^(2)
|
Failure | Failure | Error | Failed [1 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}
| |
19.5.E9 | \compellintEk@{k} = \compellintKk@{k}+\frac{2\pi^{2}}{\compellintKk@{k}}\,\frac{\sum_{n=1}^{\infty}(-1)^{n}n^{2}q^{n^{2}}}{1+2\sum_{n=1}^{\infty}(-1)^{n}q^{n^{2}}} |
EllipticE(k) = EllipticK(k)+(2*(Pi)^(2))/(EllipticK(k))*(sum((- 1)^(n)* (n)^(2)*(exp(- Pi*EllipticCK(k)/EllipticK(k)))^((n)^(2)), n = 1..infinity))/(1 + 2*sum((- 1)^(n)*(exp(- Pi*EllipticCK(k)/EllipticK(k)))^((n)^(2)), n = 1..infinity))
|
EllipticE[(k)^2] == EllipticK[(k)^2]+Divide[2*(Pi)^(2),EllipticK[(k)^2]]*Divide[Sum[(- 1)^(n)* (n)^(2)*(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None],1 + 2*Sum[(- 1)^(n)*(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None]]
|
Failure | Failure | Error | Skipped - Because timed out | |
19.5.E10 | \compellintKk@{k} = \frac{\pi}{2}\prod_{m=1}^{\infty}(1+k_{m}) |
|
EllipticK(k) = (Pi)/(2)*product(1 + k[m], m = 1..infinity)
|
EllipticK[(k)^2] == Divide[Pi,2]*Product[1 + Subscript[k, m], {m, 1, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [30 / 30]
Result: Plus[DirectedInfinity[], Times[-1.5707963267948966, NProduct[Plus[1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {m, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[k, 1], Rule[Subscript[k, m], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[0.8428751774062981, -1.0782578237498217], Times[-1.5707963267948966, NProduct[Plus[1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {m, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[k, 2], Rule[Subscript[k, m], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.5.E11 | k_{m+1} = \frac{1-\sqrt{1-k_{m}^{2}}}{1+\sqrt{1-k_{m}^{2}}} |
|
k[m + 1] = (1 -sqrt(1 - (k[m])^(2)))/(1 +sqrt(1 - (k[m])^(2))) |
Subscript[k, m + 1] == Divide[1 -Sqrt[1 - (Subscript[k, m])^(2)],1 +Sqrt[1 - (Subscript[k, m])^(2)]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |