Orthogonal Polynomials - 18.38 Mathematical Applications

From testwiki
Revision as of 11:48, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.38.E1 V n ( x ) = 2 n H n + 1 ( x ) H n - 1 ( x ) / ( H n ( x ) ) 2 subscript 𝑉 𝑛 𝑥 2 𝑛 Hermite-polynomial-H 𝑛 1 𝑥 Hermite-polynomial-H 𝑛 1 𝑥 superscript Hermite-polynomial-H 𝑛 𝑥 2 {\displaystyle{\displaystyle V_{n}(x)=\ifrac{2nH_{n+1}\left(x\right)H_{n-1}% \left(x\right)}{(H_{n}\left(x\right))^{2}}}}
V_{n}(x) = \ifrac{2n\HermitepolyH{n+1}@{x}\HermitepolyH{n-1}@{x}}{(\HermitepolyH{n}@{x})^{2}}

V[n](x) = (2*n*HermiteH(n + 1, x)*HermiteH(n - 1, x))/((HermiteH(n, x))^(2))
Subscript[V, n][x] == Divide[2*n*HermiteH[n + 1, x]*HermiteH[n - 1, x],(HermiteH[n, x])^(2)]
Failure Aborted
Failed [90 / 90]
Result: -.256517449+.7500000000*I
Test Values: {x = 3/2, V[n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: -.905043527+.7500000000*I
Test Values: {x = 3/2, V[n] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[-0.25651744987889735, 0.7499999999999999]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[Subscript[V, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.905043526976403, 0.7499999999999999]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Subscript[V, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
18.38.E3 m = 0 n P m ( α , 0 ) ( x ) 0 superscript subscript 𝑚 0 𝑛 Jacobi-polynomial-P 𝛼 0 𝑚 𝑥 0 {\displaystyle{\displaystyle\sum_{m=0}^{n}P^{(\alpha,0)}_{m}\left(x\right)\geq 0}}
\sum_{m=0}^{n}\JacobipolyP{\alpha}{0}{m}@{x} \geq 0
- 1 x , x 1 , α > - 1 formulae-sequence 1 𝑥 formulae-sequence 𝑥 1 𝛼 1 {\displaystyle{\displaystyle-1\leq x,x\leq 1,\alpha>-1}}
sum(JacobiP(m, alpha, 0, x), m = 0..n) >= 0
Sum[JacobiP[m, \[Alpha], 0, x], {m, 0, n}, GenerateConditions->None] >= 0
Failure Failure Successful [Tested: 3] Successful [Tested: 27]