Orthogonal Polynomials - 18.16 Zeros
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
18.16.E1 | 0 < \theta_{n,1} |
|
0 < theta[n , 1] |
0 < Subscript[\[Theta], n , 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E2 | \frac{(m-\tfrac{1}{2})\pi}{n+\tfrac{1}{2}} \leq \theta_{n,m} |
|
((m -(1)/(2))*Pi)/(n +(1)/(2)) <= theta[n , m] |
Divide[(m -Divide[1,2])*Pi,n +Divide[1,2]] <= Subscript[\[Theta], n , m] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E3 | \frac{(m-\tfrac{1}{2})\pi}{n} \leq \theta_{n,m} |
((m -(1)/(2))*Pi)/(n) <= theta[n , m] |
Divide[(m -Divide[1,2])*Pi,n] <= Subscript[\[Theta], n , m] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
18.16.E4 | \frac{\left(m+\tfrac{1}{2}(\alpha+\beta-1)\right)\pi}{\rho} < \theta_{n,m} |
|
((m +(1)/(2)*(alpha + beta - 1))*Pi)/(n +(1)/(2)*(alpha + beta + 1)) < theta[n , m] |
Divide[(m +Divide[1,2]*(\[Alpha]+ \[Beta]- 1))*Pi,n +Divide[1,2]*(\[Alpha]+ \[Beta]+ 1)] < Subscript[\[Theta], n , m] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E5 | \theta_{n,m} > \frac{\left(m+\tfrac{1}{2}\alpha-\tfrac{1}{4}\right){\pi}}{n+\alpha+\tfrac{1}{2}} |
theta[n , m] > ((m +(1)/(2)*alpha -(1)/(4))*Pi)/(n + alpha +(1)/(2)) |
Subscript[\[Theta], n , m] > Divide[(m +Divide[1,2]*\[Alpha]-Divide[1,4])*Pi,n + \[Alpha]+Divide[1,2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
18.16.E6 | \theta_{n,m} \leq \frac{j_{\alpha,m}}{\left(\rho^{2}+\tfrac{1}{12}\left(1-\alpha^{2}-3\beta^{2}\right)\right)^{\frac{1}{2}}} |
|
theta[n , m] <= (j[alpha , m])/(((n +(1)/(2)*(alpha + beta + 1))^(2)+(1)/(12)*(1 - (alpha)^(2)- 3*(beta)^(2)))^((1)/(2))) |
Subscript[\[Theta], n , m] <= Divide[Subscript[j, \[Alpha], m],((n +Divide[1,2]*(\[Alpha]+ \[Beta]+ 1))^(2)+Divide[1,12]*(1 - \[Alpha]^(2)- 3*\[Beta]^(2)))^(Divide[1,2])] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E7 | \theta_{n,m} \geq \frac{j_{\alpha,m}}{\left(\rho^{2}+\tfrac{1}{4}-\tfrac{1}{2}(\alpha^{2}+\beta^{2})-\pi^{-2}(1-4\alpha^{2})\right)^{\frac{1}{2}}} |
|
theta[n , m] >= (j[alpha , m])/(((n +(1)/(2)*(alpha + beta + 1))^(2)+(1)/(4)-(1)/(2)*((alpha)^(2)+ (beta)^(2))- (Pi)^(- 2)*(1 - 4*(alpha)^(2)))^((1)/(2))) |
Subscript[\[Theta], n , m] >= Divide[Subscript[j, \[Alpha], m],((n +Divide[1,2]*(\[Alpha]+ \[Beta]+ 1))^(2)+Divide[1,4]-Divide[1,2]*(\[Alpha]^(2)+ \[Beta]^(2))- (Pi)^(- 2)*(1 - 4*\[Alpha]^(2)))^(Divide[1,2])] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E9 | 0 < x_{n,1} |
|
0 < x[n , 1] |
0 < Subscript[x, n , 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E10 | x_{n,m} > \ifrac{j_{\alpha,m}^{2}}{\nu} |
|
x[n , m] > ((j[alpha , m])^(2))/(4*n + 2*alpha + 2) |
Subscript[x, n , m] > Divide[(Subscript[j, \[Alpha], m])^(2),4*n + 2*\[Alpha]+ 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E11 | x_{n,m} < (4m+2\alpha+2)\left(2m+\alpha+1+\left((2m+\alpha+1)^{2}+\tfrac{1}{4}-\alpha^{2}\right)^{\frac{1}{2}}\right)\Big{/}\nu |
|
x[n , m] < (4*m + 2*alpha + 2)*(2*m + alpha + 1 +((2*m + alpha + 1)^(2)+(1)/(4)- (alpha)^(2))^((1)/(2)))/(4*n + 2*alpha + 2) |
Subscript[x, n , m] < (4*m + 2*\[Alpha]+ 2)*(2*m + \[Alpha]+ 1 +((2*m + \[Alpha]+ 1)^(2)+Divide[1,4]- \[Alpha]^(2))^(Divide[1,2]))/(4*n + 2*\[Alpha]+ 2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E12 | x_{n,1} \geq \frac{2n^{2}+\alpha n-n+2\alpha+2-2(n-1)\sqrt{n^{2}+(n+2)(\alpha+1)}}{n+2} |
|
x[n , 1] >= (2*(n)^(2)+ alpha*n - n + 2*alpha + 2 - 2*(n - 1)*sqrt((n)^(2)+(n + 2)*(alpha + 1)))/(n + 2) |
Subscript[x, n , 1] >= Divide[2*(n)^(2)+ \[Alpha]*n - n + 2*\[Alpha]+ 2 - 2*(n - 1)*Sqrt[(n)^(2)+(n + 2)*(\[Alpha]+ 1)],n + 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E13 | x_{n,n} \leq \frac{2n^{2}+\alpha n-n+2\alpha+2+2(n-1)\sqrt{n^{2}+(n+2)(\alpha+1)}}{n+2} |
|
x[n , n] <= (2*(n)^(2)+ alpha*n - n + 2*alpha + 2 + 2*(n - 1)*sqrt((n)^(2)+(n + 2)*(alpha + 1)))/(n + 2) |
Subscript[x, n , n] <= Divide[2*(n)^(2)+ \[Alpha]*n - n + 2*\[Alpha]+ 2 + 2*(n - 1)*Sqrt[(n)^(2)+(n + 2)*(\[Alpha]+ 1)],n + 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.16.E16 | (2n+1)^{\frac{1}{2}} > x_{n,1} |
|
(2*n + 1)^((1)/(2)) > x[n , 1]
|
(2*n + 1)^(Divide[1,2]) > Subscript[x, n , 1]
|
Failure | Failure | Failed [1 / 30] Result: 2. < 1.732050808
Test Values: {x[n,1] = 2, n = 1}
|
Failed [13 / 30]
Result: Greater[1.7320508075688772, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[n, 1], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Greater[2.23606797749979, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[n, 2], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.16.E16 | x_{n,1} > x_{n,2} |
|
x[n , 1] > x[n , 2]
|
Subscript[x, n , 1] > Subscript[x, n , 2]
|
Failure | Failure | Failed [75 / 300] Result: .8660254040+.5000000000*I < .8660254040+.5000000000*I
Test Values: {x[n,1] = 1/2*3^(1/2)+1/2*I, x[n,2] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: .8660254040+.5000000000*I < .8660254040+.5000000000*I
Test Values: {x[n,1] = 1/2*3^(1/2)+1/2*I, x[n,2] = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [255 / 300]
Result: Greater[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[n, 1], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Greater[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[n, 2], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.16.E16 | x_{n,\floor{n/2}} > 0 |
|
x[n , floor(n/2)] > 0
|
Subscript[x, n , Floor[n/2]] > 0
|
Failure | Failure | Failed [9 / 30] Result: 0. < -1.500000000
Test Values: {x[n,floor(1/2*n)] = -3/2, n = 1}
Result: 0. < -1.500000000
Test Values: {x[n,floor(1/2*n)] = -3/2, n = 2}
... skip entries to safe data |
Failed [21 / 30]
Result: Greater[Complex[0.8660254037844387, 0.49999999999999994], 0.0]
Test Values: {Rule[n, 1], Rule[Subscript[x, n, Floor[Times[Rational[1, 2], n]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Greater[Complex[0.8660254037844387, 0.49999999999999994], 0.0]
Test Values: {Rule[n, 2], Rule[Subscript[x, n, Floor[Times[Rational[1, 2], n]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |