Orthogonal Polynomials - 18.14 Inequalities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
18.14.E1 | |\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq \JacobipolyP{\alpha}{\beta}{n}@{1} |
abs(JacobiP(n, alpha, beta, x)) <= JacobiP(n, alpha, beta, 1)
|
Abs[JacobiP[n, \[Alpha], \[Beta], x]] <= JacobiP[n, \[Alpha], \[Beta], 1]
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E1 | \JacobipolyP{\alpha}{\beta}{n}@{1} = \frac{\Pochhammersym{\alpha+1}{n}}{n!} |
JacobiP(n, alpha, beta, 1) = (pochhammer(alpha + 1, n))/(factorial(n))
|
JacobiP[n, \[Alpha], \[Beta], 1] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 9] | |
18.14.E2 | |\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq |\JacobipolyP{\alpha}{\beta}{n}@{-1}|=\frac{\Pochhammersym{\beta+1}{n}}{n!} |
abs(JacobiP(n, alpha, beta, x)) <= abs(JacobiP(n, alpha, beta, - 1)) = (pochhammer(beta + 1, n))/(factorial(n))
|
Abs[JacobiP[n, \[Alpha], \[Beta], x]] <= Abs[JacobiP[n, \[Alpha], \[Beta], - 1]] == Divide[Pochhammer[\[Beta]+ 1, n],(n)!]
|
Failure | Failure | Error | Failed [1 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[x, 0.5], Rule[α, 2], Rule[β, Rational[1, 2]]}
| |
18.14.E4 | |\ultrasphpoly{\lambda}{n}@{x}| \leq \ultrasphpoly{\lambda}{n}@{1} |
abs(GegenbauerC(n, lambda, x)) <= GegenbauerC(n, lambda, 1)
|
Abs[GegenbauerC[n, \[Lambda], x]] <= GegenbauerC[n, \[Lambda], 1]
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E4 | \ultrasphpoly{\lambda}{n}@{1} = \frac{\Pochhammersym{2\lambda}{n}}{n!} |
GegenbauerC(n, lambda, 1) = (pochhammer(2*lambda, n))/(factorial(n))
|
GegenbauerC[n, \[Lambda], 1] == Divide[Pochhammer[2*\[Lambda], n],(n)!]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 9] | |
18.14.E5 | |\ultrasphpoly{\lambda}{2m}@{x}| \leq |\ultrasphpoly{\lambda}{2m}@{0}|=\left|\frac{\Pochhammersym{\lambda}{m}}{m!}\right| |
abs(GegenbauerC(2*m, lambda, x)) <= abs(GegenbauerC(2*m, lambda, 0)) = abs((pochhammer(lambda, m))/(factorial(m)))
|
Abs[GegenbauerC[2*m, \[Lambda], x]] <= Abs[GegenbauerC[2*m, \[Lambda], 0]] == Abs[Divide[Pochhammer[\[Lambda], m],(m)!]]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E6 | |\ultrasphpoly{\lambda}{2m+1}@{x}| < \frac{-2\Pochhammersym{\lambda}{m+1}}{\left((2m+1)(2\lambda+2m+1)\right)^{\frac{1}{2}}m!} |
abs(GegenbauerC(2*m + 1, lambda, x)) < (- 2*pochhammer(lambda, m + 1))/(((2*m + 1)*(2*lambda + 2*m + 1))^((1)/(2))* factorial(m))
|
Abs[GegenbauerC[2*m + 1, \[Lambda], x]] < Divide[- 2*Pochhammer[\[Lambda], m + 1],((2*m + 1)*(2*\[Lambda]+ 2*m + 1))^(Divide[1,2])* (m)!]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E7 | (n+\lambda)^{1-\lambda}(1-x^{2})^{\frac{1}{2}\lambda}|\ultrasphpoly{\lambda}{n}@{x}| < \frac{2^{1-\lambda}}{\EulerGamma@{\lambda}} |
(n + lambda)^(1 - lambda)*(1 - (x)^(2))^((1)/(2)*lambda)*abs(GegenbauerC(n, lambda, x)) < ((2)^(1 - lambda))/(GAMMA(lambda))
|
(n + \[Lambda])^(1 - \[Lambda])*(1 - (x)^(2))^(Divide[1,2]*\[Lambda])*Abs[GegenbauerC[n, \[Lambda], x]] < Divide[(2)^(1 - \[Lambda]),Gamma[\[Lambda]]]
|
Skipped - Unable to analyze test case: Null | Skipped - Unable to analyze test case: Null | - | - | |
18.14.E8 | e^{-\frac{1}{2}x}\left|\LaguerrepolyL[\alpha]{n}@{x}\right| \leq \LaguerrepolyL[\alpha]{n}@{0} |
exp(-(1)/(2)*x)*abs(LaguerreL(n, alpha, x)) <= LaguerreL(n, alpha, 0)
|
Exp[-Divide[1,2]*x]*Abs[LaguerreL[n, \[Alpha], x]] <= LaguerreL[n, \[Alpha], 0]
|
Missing Macro Error | Failure | - | Successful [Tested: 27] | |
18.14.E8 | \LaguerrepolyL[\alpha]{n}@{0} = \frac{\Pochhammersym{\alpha+1}{n}}{n!} |
LaguerreL(n, alpha, 0) = (pochhammer(alpha + 1, n))/(factorial(n))
|
LaguerreL[n, \[Alpha], 0] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]
|
Missing Macro Error | Successful | - | Successful [Tested: 9] | |
18.14.E9 | \frac{1}{(2^{n}n!)^{\frac{1}{2}}}e^{-\frac{1}{2}x^{2}}|\HermitepolyH{n}@{x}| \leq 1 |
(1)/(((2)^(n)* factorial(n))^((1)/(2)))*exp(-(1)/(2)*(x)^(2))*abs(HermiteH(n, x)) <= 1
|
Divide[1,((2)^(n)* (n)!)^(Divide[1,2])]*Exp[-Divide[1,2]*(x)^(2)]*Abs[HermiteH[n, x]] <= 1
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E10 | (\LegendrepolyP{n}@{x})^{2} \geq \LegendrepolyP{n-1}@{x}\LegendrepolyP{n+1}@{x} |
(LegendreP(n, x))^(2) >= LegendreP(n - 1, x)*LegendreP(n + 1, x)
|
(LegendreP[n, x])^(2) >= LegendreP[n - 1, x]*LegendreP[n + 1, x]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
18.14.E11 | (R_{n}(x))^{2} \geq R_{n-1}(x)R_{n+1}(x) |
(R[n](x))^(2) >= R[n - 1](x)* R[n + 1](x) |
(Subscript[R, n][x])^(2) >= Subscript[R, n - 1][x]* Subscript[R, n + 1][x] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
18.14.E12 | (\LaguerrepolyL[\alpha]{n}@{x})^{2} \geq \LaguerrepolyL[\alpha]{n-1}@{x}\LaguerrepolyL[\alpha]{n+1}@{x} |
(LaguerreL(n, alpha, x))^(2) >= LaguerreL(n - 1, alpha, x)*LaguerreL(n + 1, alpha, x)
|
(LaguerreL[n, \[Alpha], x])^(2) >= LaguerreL[n - 1, \[Alpha], x]*LaguerreL[n + 1, \[Alpha], x]
|
Missing Macro Error | Failure | - | Successful [Tested: 27] | |
18.14.E13 | (\HermitepolyH{n}@{x})^{2} \geq \HermitepolyH{n-1}@{x}\HermitepolyH{n+1}@{x} |
(HermiteH(n, x))^(2) >= HermiteH(n - 1, x)*HermiteH(n + 1, x)
|
(HermiteH[n, x])^(2) >= HermiteH[n - 1, x]*HermiteH[n + 1, x]
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E14 | -1 = x_{n,0} |
|
- 1 = x[n , 0] |
- 1 == Subscript[x, n , 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14.E15 | x_{n,m} \leq (\beta-\alpha)/(\alpha+\beta+1)\leq x_{n,m+1} |
|
x[n , m] <= (beta - alpha)/(alpha + beta + 1) <= x[n , m + 1] |
Subscript[x, n , m] <= (\[Beta]- \[Alpha])/(\[Alpha]+ \[Beta]+ 1) <= Subscript[x, n , m + 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14#Ex1 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
|
abs(JacobiP(n, alpha, beta, x[n , 0])) > abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Failed [184 / 300] Result: 2.500000000 < 2.500000000
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: 4.871793818 < 4.871793818
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [184 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14#Ex2 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}| |
abs(JacobiP(n, alpha, beta, x[n , n])) > abs(JacobiP(n, alpha, beta, x[n , n - 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]]
|
Error | Failure | - | Skip - No test values generated | |
18.14#Ex3 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
|
abs(JacobiP(n, alpha, beta, x[n , 0])) < abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Failed [184 / 300] Result: 2.500000000 < 2.500000000
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: 4.871793820 < 4.871793820
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [184 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14#Ex4 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}| |
abs(JacobiP(n, alpha, beta, x[n , n])) < abs(JacobiP(n, alpha, beta, x[n , n - 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]]
|
Error | Failure | - | Skip - No test values generated | |
18.14.E18 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
abs(JacobiP(n, alpha, beta, x[n , 0])) < abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E19 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
abs(JacobiP(n, alpha, beta, x[n , 0])) > abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E20 | \left|\frac{\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-m}}}{\JacobipolyP{\alpha}{\beta}{n}@{1}}\right| > \left|\frac{\JacobipolyP{\alpha}{\beta}{n+1}@{x_{n+1,n-m+1}}}{\JacobipolyP{\alpha}{\beta}{n+1}@{1}}\right| |
abs((JacobiP(n, alpha, beta, x[n , n - m]))/(JacobiP(n, alpha, beta, 1))) > abs((JacobiP(n + 1, alpha, beta, x[n + 1 , n - m + 1]))/(JacobiP(n + 1, alpha, beta, 1)))
|
Abs[Divide[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - m]],JacobiP[n, \[Alpha], \[Beta], 1]]] > Abs[Divide[JacobiP[n + 1, \[Alpha], \[Beta], Subscript[x, n + 1 , n - m + 1]],JacobiP[n + 1, \[Alpha], \[Beta], 1]]]
|
Failure | Failure | Failed [188 / 300] Result: 1.113552873 < 1.000000000
Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
Result: 1.400000001 < 1.113552873
Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
... skip entries to safe data |
Failed [234 / 300]
Result: False
Test Values: {Rule[m, 1], Rule[n, 1], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, n], Plus[1, Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[m, 1], Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, n], Plus[1, Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
18.14.E21 | 0 = x_{n,0} |
|
0 = x[n , 0] |
0 == Subscript[x, n , 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14.E22 | x_{n,m} \leq \alpha+\tfrac{1}{2} |
|
x[n , m] <= alpha +(1)/(2) |
Subscript[x, n , m] <= \[Alpha]+Divide[1,2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14#Ex5 | |\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}| |
|
abs(LaguerreL(n, alpha, x[n , 0])) > abs(LaguerreL(n, alpha, x[n , 1]))
|
Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 0]]] > Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 1]]]
|
Missing Macro Error | Failure | - | Failed [165 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14#Ex6 | |\LaguerrepolyL[\alpha]{n}@{x_{n,n-1}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,n-2}}| |
|
abs(LaguerreL(n, alpha, x[n , n - 1])) > abs(LaguerreL(n, alpha, x[n , n - 2]))
|
Abs[LaguerreL[n, \[Alpha], Subscript[x, n , n - 1]]] > Abs[LaguerreL[n, \[Alpha], Subscript[x, n , n - 2]]]
|
Missing Macro Error | Failure | - | Failed [165 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14.E24 | |\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| < |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}| |
|
abs(LaguerreL(n, alpha, x[n , 0])) < abs(LaguerreL(n, alpha, x[n , 1]))
|
Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 0]]] < Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 1]]]
|
Missing Macro Error | Failure | - | Failed [165 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |