Orthogonal Polynomials - 18.3 Definitions

From testwiki
Revision as of 11:44, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.3.E1 n = 1 N + 1 T j ( x N + 1 , n ) T k ( x N + 1 , n ) = 0 superscript subscript 𝑛 1 𝑁 1 Chebyshev-polynomial-first-kind-T 𝑗 subscript 𝑥 𝑁 1 𝑛 Chebyshev-polynomial-first-kind-T 𝑘 subscript 𝑥 𝑁 1 𝑛 0 {\displaystyle{\displaystyle\sum_{n=1}^{N+1}T_{j}\left(x_{N+1,n}\right)T_{k}% \left(x_{N+1,n}\right)=0}}
\sum_{n=1}^{N+1}\ChebyshevpolyT{j}@{x_{N+1,n}}\ChebyshevpolyT{k}@{x_{N+1,n}} = 0
0 j , j N , 0 k , k N , j k formulae-sequence 0 𝑗 formulae-sequence 𝑗 𝑁 formulae-sequence 0 𝑘 formulae-sequence 𝑘 𝑁 𝑗 𝑘 {\displaystyle{\displaystyle 0\leq j,j\leq N,0\leq k,k\leq N,j\neq k}}
sum(ChebyshevT(j, x[N + 1 , n])*ChebyshevT(k, x[N + 1 , n]), n = 1..N + 1) = 0
Sum[ChebyshevT[j, Subscript[x, N + 1 , n]]*ChebyshevT[k, Subscript[x, N + 1 , n]], {n, 1, N + 1}, GenerateConditions->None] == 0
Skipped - Unable to analyze test case: Null Skipped - Unable to analyze test case: Null - -
18.3.E2 x N + 1 , n = cos ( ( n - 1 2 ) π / ( N + 1 ) ) subscript 𝑥 𝑁 1 𝑛 𝑛 1 2 𝜋 𝑁 1 {\displaystyle{\displaystyle x_{N+1,n}=\cos\left((n-\tfrac{1}{2})\pi/(N+1)% \right)}}
x_{N+1,n} = \cos@{(n-\tfrac{1}{2})\pi/(N+1)}

x[N + 1 , n] = cos((n -(1)/(2))*Pi/(N + 1))
Subscript[x, N + 1 , n] == Cos[(n -Divide[1,2])*Pi/(N + 1)]
Failure Failure
Failed [298 / 300]
Result: .1432026267+.3500908026*I
Test Values: {N = 1/2*3^(1/2)+1/2*I, x[N+1,n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: 1.718798807+.233214116e-1*I
Test Values: {N = 1/2*3^(1/2)+1/2*I, x[N+1,n] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [298 / 300]
Result: Complex[0.14320262643759762, 0.350090802645732]
Test Values: {Rule[n, 1], Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, N], n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.7187988066024098, 0.023321411689447014]
Test Values: {Rule[n, 2], Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, N], n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data