q -Hypergeometric and Related Functions - 17.7 Special Cases of Higher Functions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
17.7.E1 | \qgenhyperphi{2}{2}@@{a,q/a}{-q,b}{q}{-b} = \frac{\qmultiPochhammersym{ab,bq/a}{q^{2}}{\infty}}{\qPochhammer{b}{q}{\infty}} |
Error
|
QHypergeometricPFQ[{a , q/a},{- q , b},q,- b] == Divide[Product[QPochhammer[Part[{a*b , b*q/a},i],(q)^(2),Infinity],{i,1,Length[{a*b , b*q/a}]}],QPochhammer[b, q, Infinity]]
|
Missing Macro Error | Failure | - | Failed [96 / 120]
Result: Plus[QHypergeometricPFQ[{-1.5, Complex[-0.5773502691896257, -0.33333333333333326]}
Test Values: {Complex[-0.8660254037844387, -0.49999999999999994], -0.5}, Complex[0.8660254037844387, 0.49999999999999994], 0.5], Times[-1.0, Power[QPochhammer[-0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[Complex[0.28867513459481287, 0.16666666666666663], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], QPochhammer[0.75, Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]]]], {Rule[a, -1.5], Rule[b, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
17.7.E2 | \qgenhyperphi{2}{2}@@{a^{2},b^{2}}{abq^{\frac{1}{2}},-abq^{\frac{1}{2}}}{q}{-q} = \frac{\qmultiPochhammersym{a^{2}q,b^{2}q}{q^{2}}{\infty}}{\qmultiPochhammersym{q,a^{2}b^{2}q}{q^{2}}{\infty}} |
|
Error
|
QHypergeometricPFQ[{(a)^(2), (b)^(2)},{a*b*(q)^(Divide[1,2]), - a*b*(q)^(Divide[1,2])},q,- q] == Divide[Product[QPochhammer[Part[{(a)^(2)* q , (b)^(2)* q},i],(q)^(2),Infinity],{i,1,Length[{(a)^(2)* q , (b)^(2)* q}]}],Product[QPochhammer[Part[{q , (a)^(2)* (b)^(2)* q},i],(q)^(2),Infinity],{i,1,Length[{q , (a)^(2)* (b)^(2)* q}]}]]
|
Missing Macro Error | Failure | - | Failed [240 / 300]
Result: Plus[QHypergeometricPFQ[{2.25, 2.25}
Test Values: {Complex[2.173333109150404, 0.5823428514806717], Complex[-2.173333109150404, -0.5823428514806717]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[-0.8660254037844387, -0.49999999999999994]], Times[-1.0, Power[QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], -1], Power[QPochhammer[Complex[1.948557158514987, 1.1249999999999998], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], 2], Power[QPochhammer[Complex[4.384253606658721, 2.5312499999999996], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], -1]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
17.7.E3 | \qgenhyperphi{2}{2}@@{\ifrac{c^{2}}{b^{2}},b^{2}}{c,cq}{q^{2}}{q} = \frac{1}{2}\frac{\qmultiPochhammersym{b^{2},q}{q^{2}}{\infty}}{\qmultiPochhammersym{c,cq}{q^{2}}{\infty}}{\left(\frac{\qPochhammer{c/b}{q}{\infty}}{\qPochhammer{b}{q}{\infty}}+\frac{\qPochhammer{-c/b}{q}{\infty}}{\qPochhammer{-b}{q}{\infty}}\right)} |
|
Error
|
QHypergeometricPFQ[{Divide[(c)^(2),(b)^(2)], (b)^(2)},{c , c*q},(q)^(2),q] == Divide[1,2]*Divide[Product[QPochhammer[Part[{(b)^(2), q},i],(q)^(2),Infinity],{i,1,Length[{(b)^(2), q}]}],Product[QPochhammer[Part[{c , c*q},i],(q)^(2),Infinity],{i,1,Length[{c , c*q}]}]]*(Divide[QPochhammer[c/b, q, Infinity],QPochhammer[b, q, Infinity]]+Divide[QPochhammer[- c/b, q, Infinity],QPochhammer[- b, q, Infinity]])
|
Missing Macro Error | Failure | - | Failed [260 / 300]
Result: Plus[QHypergeometricPFQ[{1.0, 2.25}
Test Values: {-1.5, Complex[-1.299038105676658, -0.7499999999999999]}, Complex[0.5000000000000001, 0.8660254037844386], Complex[0.8660254037844387, 0.49999999999999994]], Times[-0.5, Power[QPochhammer[-1.5, Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], -1], Power[QPochhammer[Complex[-1.299038105676658, -0.7499999999999999], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], -1], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], Plus[0.0, Times[QPochhammer[-1.0, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], Power[QPochhammer[1.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]], QPochhammer[2.25, Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]]]], {Rule[b, -1.5], Rule[c, -1.5], Rule[q, Power[E, Times[Complex[0<syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
17.7.E4 | \qgenhyperphi{3}{2}@@{a,b,q^{-n}}{c,abq^{1-n}/c}{q}{q} = \frac{\qmultiPochhammersym{c/a,c/b}{q}{n}}{\qmultiPochhammersym{c,c/(ab)}{q}{n}} |
|
Error
|
QHypergeometricPFQ[{a , b , (q)^(- n)},{c , a*b*(q)^(1 - n)/c},q,q] == Divide[Product[QPochhammer[Part[{c/a , c/b},i],q,n],{i,1,Length[{c/a , c/b}]}],Product[QPochhammer[Part[{c , c/(a*b)},i],q,n],{i,1,Length[{c , c/(a*b)}]}]]
|
Missing Macro Error | Failure | - | Failed [196 / 300]
Result: Plus[0.0, QHypergeometricPFQ[{-1.5, -1.5, Complex[0.8660254037844387, -0.49999999999999994]}
Test Values: {-1.5, -1.5}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, 0.0], QHypergeometricPFQ[{-1.5, -1.5, Complex[0.5000000000000001, -0.8660254037844386]}
Test Values: {-1.5, Complex[-1.299038105676658, 0.7499999999999999]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
17.7.E5 | \qgenhyperphi{3}{2}@@{a,b,c}{e,f}{q}{q}+\frac{\qmultiPochhammersym{q/e,a,b,c,qf/e}{q}{\infty}}{\qmultiPochhammersym{e/q,aq/e,bq/e,cq/e,f}{q}{\infty}}\*\qgenhyperphi{3}{2}@@{aq/e,bq/e,cq/e}{q^{2}/e,qf/e}{q}{q} = \frac{\qmultiPochhammersym{q/e,f/a,f/b,f/c}{q}{\infty}}{\qmultiPochhammersym{aq/e,bq/e,cq/e,f}{q}{\infty}} |
|
Error
|
QHypergeometricPFQ[{a , b , c},{e , f},q,q]+Divide[Product[QPochhammer[Part[{q/e , a , b , c , q*f/e},i],q,Infinity],{i,1,Length[{q/e , a , b , c , q*f/e}]}],Product[QPochhammer[Part[{e/q , a*q/e , b*q/e , c*q/e , f},i],q,Infinity],{i,1,Length[{e/q , a*q/e , b*q/e , c*q/e , f}]}]]* QHypergeometricPFQ[{a*q/e , b*q/e , c*q/e},{(q)^(2)/e , q*f/e},q,q] == Divide[Product[QPochhammer[Part[{q/e , f/a , f/b , f/c},i],q,Infinity],{i,1,Length[{q/e , f/a , f/b , f/c}]}],Product[QPochhammer[Part[{a*q/e , b*q/e , c*q/e , f},i],q,Infinity],{i,1,Length[{a*q/e , b*q/e , c*q/e , f}]}]]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Plus[0.0, QHypergeometricPFQ[{-1.5, -1.5, -1.5}
Test Values: {Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]], Times[QHypergeometricPFQ[{Complex[-1.5, 0.0], Complex[-1.5, 0.0], Complex[-1.5, 0.0]}, {Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]], Power[QPochhammer[-1.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], 3], Power[QPochhammer[Complex[-1.5, 0.0], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -3]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[e, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Co<syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[e, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
17.7.E6 | \qgenhyperphi{3}{2}@@{q^{-2n},b,c}{q^{1-2n}/b,q^{1-2n}/c}{q}{\frac{q^{2-n}}{bc}} = \frac{\qmultiPochhammersym{b,c}{q}{n}\qmultiPochhammersym{q,bc}{q}{2n}}{\qmultiPochhammersym{q,bc}{q}{n}\qmultiPochhammersym{b,c}{q}{2n}} |
|
Error
|
QHypergeometricPFQ[{(q)^(- 2*n), b , c},{(q)^(1 - 2*n)/b , (q)^(1 - 2*n)/c},q,Divide[(q)^(2 - n),b*c]] == Divide[Product[QPochhammer[Part[{b , c},i],q,n],{i,1,Length[{b , c}]}]*Product[QPochhammer[Part[{q , b*c},i],q,2*n],{i,1,Length[{q , b*c}]}],Product[QPochhammer[Part[{q , b*c},i],q,n],{i,1,Length[{q , b*c}]}]*Product[QPochhammer[Part[{b , c},i],q,2*n],{i,1,Length[{b , c}]}]]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
17.7.E7 | \qgenhyperphi{4}{3}@@{a,-qa^{\frac{1}{2}},b,c}{-a^{\frac{1}{2}},aq/b,aq/c}{q}{\frac{qa^{\frac{1}{2}}}{bc}} = \frac{\qmultiPochhammersym{aq,qa^{\frac{1}{2}}/b,qa^{\frac{1}{2}}/c,aq/(bc)}{q}{\infty}}{\qmultiPochhammersym{aq/b,aq/c,qa^{\frac{1}{2}},qa^{\frac{1}{2}}/(bc)}{q}{\infty}} |
|
Error
|
QHypergeometricPFQ[{a , - q*(a)^(Divide[1,2]), b , c},{- (a)^(Divide[1,2]), a*q/b , a*q/c},q,Divide[q*(a)^(Divide[1,2]),b*c]] == Divide[Product[QPochhammer[Part[{a*q , q*(a)^(Divide[1,2])/b , q*(a)^(Divide[1,2])/c , a*q/(b*c)},i],q,Infinity],{i,1,Length[{a*q , q*(a)^(Divide[1,2])/b , q*(a)^(Divide[1,2])/c , a*q/(b*c)}]}],Product[QPochhammer[Part[{a*q/b , a*q/c , q*(a)^(Divide[1,2]), q*(a)^(Divide[1,2])/(b*c)},i],q,Infinity],{i,1,Length[{a*q/b , a*q/c , q*(a)^(Divide[1,2]), q*(a)^(Divide[1,2])/(b*c)}]}]]
|
Missing Macro Error | Failure | - | Failed [248 / 300]
Result: Plus[QHypergeometricPFQ[{-1.5, Complex[0.6123724356957944, -1.0606601717798212], -1.5, -1.5}
Test Values: {Complex[0.0, -1.224744871391589], Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[-0.27216552697590857, 0.4714045207910316]], Times[-1.0, QPochhammer[Complex[-1.299038105676658, -0.7499999999999999], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], Power[QPochhammer[Complex[-0.6123724356957944, 1.0606601717798212], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[Complex[-0.5773502691896257, -0.33333333333333326], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], Power[QPochhammer[Complex[-0.27216552697590857, 0.4714045207910316], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], Power[QPochhammer[Complex[0.4082482904638<syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
17.7.E8 | \qgenhyperphi{8}{7}@@{\lambda,q\lambda^{\frac{1}{2}},-q\lambda^{\frac{1}{2}},a,b,c,-c,\lambda q/c^{2}}{\lambda^{\frac{1}{2}},-\lambda^{\frac{1}{2}},\lambda q/a,\lambda q/b,\lambda q/c,-\lambda q/c,c^{2}}{q}{-\frac{\lambda q}{ab}} = \frac{\qmultiPochhammersym{\lambda q,c^{2}/\lambda}{q}{\infty}\qmultiPochhammersym{aq,bq,c^{2}q/a,c^{2}q/b}{q^{2}}{\infty}}{\qmultiPochhammersym{\lambda q/a,\lambda q/b}{q}{\infty}\qmultiPochhammersym{q,abq,c^{2}q,c^{2}q/(ab)}{q^{2}}{\infty}} |
|
Error
|
QHypergeometricPFQ[{\[Lambda], q*\[Lambda]^(Divide[1,2]), - q*\[Lambda]^(Divide[1,2]), a , b , c , - c , \[Lambda]*q/(c)^(2)},{\[Lambda]^(Divide[1,2]), - \[Lambda]^(Divide[1,2]), \[Lambda]*q/a , \[Lambda]*q/b , \[Lambda]*q/c , - \[Lambda]*q/c , (c)^(2)},q,-Divide[\[Lambda]*q,a*b]] == Divide[Product[QPochhammer[Part[{\[Lambda]*q , (c)^(2)/\[Lambda]},i],q,Infinity],{i,1,Length[{\[Lambda]*q , (c)^(2)/\[Lambda]}]}]*Product[QPochhammer[Part[{a*q , b*q , (c)^(2)* q/a , (c)^(2)* q/b},i],(q)^(2),Infinity],{i,1,Length[{a*q , b*q , (c)^(2)* q/a , (c)^(2)* q/b}]}],Product[QPochhammer[Part[{\[Lambda]*q/a , \[Lambda]*q/b},i],q,Infinity],{i,1,Length[{\[Lambda]*q/a , \[Lambda]*q/b}]}]*Product[QPochhammer[Part[{q , a*b*q , (c)^(2)* q , (c)^(2)* q/(a*b)},i],(q)^(2),Infinity],{i,1,Length[{q , a*b*q , (c)^(2)* q , (c)^(2)* q/(a*b)}]}]]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
17.7.E11 | \qgenhyperphi{4}{3}@@{q^{-n},q^{n+1},c,-c}{e,c^{2}q/e,-q}{q}{q} = \frac{\qmultiPochhammersym{eq^{-n},eq^{n+1},c^{2}q^{1-n}/e,c^{2}q^{n+2}/e}{q^{2}}{\infty}}{\qmultiPochhammersym{e,c^{2}q/e}{q}{\infty}} |
|
Error
|
QHypergeometricPFQ[{(q)^(- n), (q)^(n + 1), c , - c},{e , (c)^(2)* q/e , - q},q,q] == Divide[Product[QPochhammer[Part[{e*(q)^(- n), e*(q)^(n + 1), (c)^(2)* (q)^(1 - n)/e , (c)^(2)* (q)^(n + 2)/e},i],(q)^(2),Infinity],{i,1,Length[{e*(q)^(- n), e*(q)^(n + 1), (c)^(2)* (q)^(1 - n)/e , (c)^(2)* (q)^(n + 2)/e}]}],Product[QPochhammer[Part[{e , (c)^(2)* q/e},i],q,Infinity],{i,1,Length[{e , (c)^(2)* q/e}]}]]
|
Missing Macro Error | Failure | - | Failed [296 / 300]
Result: Plus[0.0, QHypergeometricPFQ[{Complex[0.8660254037844387, -0.49999999999999994], Complex[0.5000000000000001, 0.8660254037844386], -1.5, 1.5}
Test Values: {Complex[0.8660254037844387, 0.49999999999999994], Complex[2.25, 0.0], Complex[-0.8660254037844387, -0.49999999999999994]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], {Rule[c, -1.5], Rule[e, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[QHypergeometricPFQ[{Complex[0.5000000000000001, -0.8660254037844386], Complex[0.0, 1.0], -1.5, 1.5}
Test Values: {Complex[0.8660254037844387, 0.49999999999999994], Complex[2.25, 0.0], Complex[-0.8660254037844387, -0.49999999999999994]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]], Times[-1.0, QPochhammer[Complex[-0.49999999999999994, 0.8660254037844387], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], QPochhammer[Complex[3.3306690738754696*^-16, 2.25], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], QPochhammer[Complex[0.8660254037844387, -0.49999999999999994], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], Power[QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[Complex[1.1250000000000004, -1.9485571585149868], Complex[0.5000000000000001, 0.8660254037844386], DirectedInfinity[1]], Power[QPochhammer[Complex[2.25, 0.0], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]], {Rule[c, -1.5], Rule[e, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
17.7.E12 | \qgenhyperphi{4}{3}@@{a,aq,b^{2}q^{2n},q^{-2n}}{b,bq,a^{2}q^{2}}{q^{2}}{q^{2}} = \frac{a^{n}\qmultiPochhammersym{-q,b/a}{q}{n}}{\qmultiPochhammersym{-aq,b}{q}{n}} |
|
Error
|
QHypergeometricPFQ[{a , a*q , (b)^(2)* (q)^(2*n), (q)^(- 2*n)},{b , b*q , (a)^(2)* (q)^(2)},(q)^(2),(q)^(2)] == Divide[(a)^(n)* Product[QPochhammer[Part[{- q , b/a},i],q,n],{i,1,Length[{- q , b/a}]}],Product[QPochhammer[Part[{- a*q , b},i],q,n],{i,1,Length[{- a*q , b}]}]]
|
Missing Macro Error | Failure | - | Failed [246 / 300]
Result: Plus[Complex[0.0, 0.0], QHypergeometricPFQ[{-1.5, Complex[-1.299038105676658, -0.7499999999999999], Complex[1.1250000000000002, 1.9485571585149868], Complex[0.5000000000000001, -0.8660254037844386]}
Test Values: {-1.5, Complex[-1.299038105676658, -0.7499999999999999], Complex[1.1250000000000002, 1.9485571585149868]}, Complex[0.5000000000000001, 0.8660254037844386], Complex[0.5000000000000001, 0.8660254037844386]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, 0.0], QHypergeometricPFQ[{-1.5, Complex[-1.299038105676658, -0.7499999999999999], Complex[-1.1249999999999996, 1.948557158514987], Complex[-0.4999999999999998, -0.8660254037844387]}
Test Values: {-1.5, Complex[-1.299038105676658, -0.7499999999999999], Complex[1.1250000000000002, 1.9485571585149868]}, Complex[0.5000000000000001, 0.8660254037844386], Complex[0.5000000000000001, 0.8660254037844386]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
17.7.E13 | \qgenhyperphi{4}{3}@@{a,aq,b^{2}q^{2n-2},q^{-2n}}{b,bq,a^{2}}{q^{2}}{q^{2}} = \frac{a^{n}\qmultiPochhammersym{-q,b/a}{q}{n}(1-bq^{n-1})}{\qmultiPochhammersym{-a,b}{q}{n}(1-bq^{2n-1})} |
|
Error
|
QHypergeometricPFQ[{a , a*q , (b)^(2)* (q)^(2*n - 2), (q)^(- 2*n)},{b , b*q , (a)^(2)},(q)^(2),(q)^(2)] == Divide[(a)^(n)* Product[QPochhammer[Part[{- q , b/a},i],q,n],{i,1,Length[{- q , b/a}]}]*(1 - b*(q)^(n - 1)),Product[QPochhammer[Part[{- a , b},i],q,n],{i,1,Length[{- a , b}]}]*(1 - b*(q)^(2*n - 1))]
|
Missing Macro Error | Failure | - | Failed [210 / 300]
Result: Plus[Complex[0.0, 0.0], QHypergeometricPFQ[{-1.5, Complex[-1.299038105676658, -0.7499999999999999], 2.25, Complex[0.5000000000000001, -0.8660254037844386]}
Test Values: {-1.5, Complex[-1.299038105676658, -0.7499999999999999], 2.25}, Complex[0.5000000000000001, 0.8660254037844386], Complex[0.5000000000000001, 0.8660254037844386]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, 0.0], QHypergeometricPFQ[{-1.5, Complex[-1.299038105676658, -0.7499999999999999], Complex[1.1250000000000002, 1.9485571585149868], Complex[-0.4999999999999998, -0.8660254037844387]}
Test Values: {-1.5, Complex[-1.299038105676658, -0.7499999999999999], 2.25}, Complex[0.5000000000000001, 0.8660254037844386], Complex[0.5000000000000001, 0.8660254037844386]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
17.7.E16 | \qgenhyperphi{6}{5}@@{a,qa^{\frac{1}{2}},-qa^{\frac{1}{2}},b,c,q^{-n}}{a^{\frac{1}{2}},-a^{\frac{1}{2}},aq/b,aq/c,aq^{n+1}}{q}{\frac{aq^{n+1}}{bc}} = \frac{\qmultiPochhammersym{aq,aq/(bc)}{q}{n}}{\qmultiPochhammersym{aq/b,aq/c}{q}{n}} |
|
Error
|
QHypergeometricPFQ[{a , q*(a)^(Divide[1,2]), - q*(a)^(Divide[1,2]), b , c , (q)^(- n)},{(a)^(Divide[1,2]), - (a)^(Divide[1,2]), a*q/b , a*q/c , a*(q)^(n + 1)},q,Divide[a*(q)^(n + 1),b*c]] == Divide[Product[QPochhammer[Part[{a*q , a*q/(b*c)},i],q,n],{i,1,Length[{a*q , a*q/(b*c)}]}],Product[QPochhammer[Part[{a*q/b , a*q/c},i],q,n],{i,1,Length[{a*q/b , a*q/c}]}]]
|
Missing Macro Error | Failure | - | Failed [240 / 300]
Result: Plus[Complex[14.55021169820366, 2.220446049250313*^-16], QHypergeometricPFQ[{-1.5, Complex[-0.6123724356957944, 1.0606601717798212], Complex[0.6123724356957944, -1.0606601717798212], -1.5, -1.5, Complex[0.8660254037844387, -0.49999999999999994]}
Test Values: {Complex[0.0, 1.224744871391589], Complex[0.0, -1.224744871391589], Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], Complex[-0.7500000000000002, -1.299038105676658]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[-0.33333333333333337, -0.5773502691896257]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-46.07567037764495, -8.881784197001252*^-15], QHypergeometricPFQ[{-1.5, Complex[-0.6123724356957944, 1.0606601717798212], Complex[0.6123724356957944, -1.0606601717798212], -1.5, -1.5, Complex[0.5000000000000001, -0.8660254037844386]}
Test Values: {Complex[0.0, 1.224744871391589], Complex[0.0, -1.224744871391589], Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], Complex[0.0, -1.5]}, Complex[0.8660254037844387, 0.49999999999999994], Complex[0.0, -0.6666666666666666]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
17.7.E20 | \sum_{k=0}^{n}\frac{1-ap^{k}q^{k}}{1-a}\frac{\qPochhammer{a}{p}{k}\qPochhammer{c}{q}{k}}{\qPochhammer{q}{q}{k}\qPochhammer{ap/c}{p}{k}}c^{-k} = \frac{\qPochhammer{ap}{p}{n}\qPochhammer{cq}{q}{n}}{\qPochhammer{q}{q}{n}\qPochhammer{ap/c}{p}{n}}c^{-n} |
|
sum((1 - a*(p)^(k)* (q)^(k))/(1 - a)*(QPochhammer(a, p, k)*QPochhammer(c, q, k))/(QPochhammer(q, q, k)*QPochhammer(a*p/c, p, k))*(c)^(- k), k = 0..n) = (QPochhammer(a*p, p, n)*QPochhammer(c*q, q, n))/(QPochhammer(q, q, n)*QPochhammer(a*p/c, p, n))*(c)^(- n)
|
Sum[Divide[1 - a*(p)^(k)* (q)^(k),1 - a]*Divide[QPochhammer[a, p, k]*QPochhammer[c, q, k],QPochhammer[q, q, k]*QPochhammer[a*p/c, p, k]]*(c)^(- k), {k, 0, n}, GenerateConditions->None] == Divide[QPochhammer[a*p, p, n]*QPochhammer[c*q, q, n],QPochhammer[q, q, n]*QPochhammer[a*p/c, p, n]]*(c)^(- n)
|
Failure | Aborted | Error | Skipped - Because timed out |
17.7.E21 | \sum_{k=0}^{n}\frac{(1-ap^{k}q^{k})(1-bp^{k}q^{-k})}{(1-a)(1-b)}\frac{\qmultiPochhammersym{a,b}{p}{k}\qmultiPochhammersym{c,a/(bc)}{q}{k}}{\qmultiPochhammersym{q,aq/b}{q}{k}\qmultiPochhammersym{ap/c,bcp}{p}{k}}q^{k} = \frac{\qmultiPochhammersym{ap,bp}{p}{n}\qmultiPochhammersym{cq,aq/(bc)}{q}{n}}{\qmultiPochhammersym{q,aq/b}{q}{n}\qmultiPochhammersym{ap/c,bcp}{p}{n}} |
|
Error
|
Sum[Divide[(1 - a*(p)^(k)* (q)^(k))*(1 - b*(p)^(k)* (q)^(- k)),(1 - a)*(1 - b)]*Divide[Product[QPochhammer[Part[{a , b},i],p,k],{i,1,Length[{a , b}]}]*Product[QPochhammer[Part[{c , a/(b*c)},i],q,k],{i,1,Length[{c , a/(b*c)}]}],Product[QPochhammer[Part[{q , a*q/b},i],q,k],{i,1,Length[{q , a*q/b}]}]*Product[QPochhammer[Part[{a*p/c , b*c*p},i],p,k],{i,1,Length[{a*p/c , b*c*p}]}]]*(q)^(k), {k, 0, n}, GenerateConditions->None] == Divide[Product[QPochhammer[Part[{a*p , b*p},i],p,n],{i,1,Length[{a*p , b*p}]}]*Product[QPochhammer[Part[{c*q , a*q/(b*c)},i],q,n],{i,1,Length[{c*q , a*q/(b*c)}]}],Product[QPochhammer[Part[{q , a*q/b},i],q,n],{i,1,Length[{q , a*q/b}]}]*Product[QPochhammer[Part[{a*p/c , b*c*p},i],p,n],{i,1,Length[{a*p/c , b*c*p}]}]]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
17.7.E22 | \sum_{k=-m}^{n}\frac{(1-adp^{k}q^{k})(1-bp^{k}/(dq^{k}))}{(1-ad)(1-(b/d))}\frac{\qmultiPochhammersym{a,b}{p}{k}\qmultiPochhammersym{c,ad^{2}/(bc)}{q}{k}}{\qmultiPochhammersym{dq,adq/b}{q}{k}\qmultiPochhammersym{adp/c,bcp/d}{p}{k}}q^{k} = \frac{(1-a)(1-b)(1-c)(1-(ad^{2}/(bc)))}{d(1-ad)(1-(b/d))(1-(c/d))(1-(ad/(bc)))}\left(\frac{\qmultiPochhammersym{ap,bp}{p}{n}\qmultiPochhammersym{cq,ad^{2}q/(bc)}{q}{n}}{\qmultiPochhammersym{dq,adq/b}{q}{n}\qmultiPochhammersym{adp/c,bcp/d}{p}{n}}-\frac{\qmultiPochhammersym{c/(ad),d/(bc)}{p}{m+1}\qmultiPochhammersym{1/d,b/(ad)}{q}{m+1}}{\qmultiPochhammersym{1/c,bc/(ad^{2})}{q}{m+1}\qmultiPochhammersym{1/a,1/b}{p}{m+1}}\right) |
|
Error
|
Sum[Divide[(1 - a*d*(p)^(k)* (q)^(k))*(1 - b*(p)^(k)/(d*(q)^(k))),(1 - a*d)*(1 -(b/d))]*Divide[Product[QPochhammer[Part[{a , b},i],p,k],{i,1,Length[{a , b}]}]*Product[QPochhammer[Part[{c , a*(d)^(2)/(b*c)},i],q,k],{i,1,Length[{c , a*(d)^(2)/(b*c)}]}],Product[QPochhammer[Part[{d*q , a*d*q/b},i],q,k],{i,1,Length[{d*q , a*d*q/b}]}]*Product[QPochhammer[Part[{a*d*p/c , b*c*p/d},i],p,k],{i,1,Length[{a*d*p/c , b*c*p/d}]}]]*(q)^(k), {k, - m, n}, GenerateConditions->None] == Divide[(1 - a)*(1 - b)*(1 - c)*(1 -(a*(d)^(2)/(b*c))),d*(1 - a*d)*(1 -(b/d))*(1 -(c/d))*(1 -(a*d/(b*c)))]*(Divide[Product[QPochhammer[Part[{a*p , b*p},i],p,n],{i,1,Length[{a*p , b*p}]}]*Product[QPochhammer[Part[{c*q , a*(d)^(2)* q/(b*c)},i],q,n],{i,1,Length[{c*q , a*(d)^(2)* q/(b*c)}]}],Product[QPochhammer[Part[{d*q , a*d*q/b},i],q,n],{i,1,Length[{d*q , a*d*q/b}]}]*Product[QPochhammer[Part[{a*d*p/c , b*c*p/d},i],p,n],{i,1,Length[{a*d*p/c , b*c*p/d}]}]]-Divide[Product[QPochhammer[Part[{c/(a*d), d/(b*c)},i],p,m + 1],{i,1,Length[{c/(a*d), d/(b*c)}]}]*Product[QPochhammer[Part[{1/d , b/(a*d)},i],q,m + 1],{i,1,Length[{1/d , b/(a*d)}]}],Product[QPochhammer[Part[{1/c , b*c/(a*(d)^(2))},i],q,m + 1],{i,1,Length[{1/c , b*c/(a*(d)^(2))}]}]*Product[QPochhammer[Part[{1/a , 1/b},i],p,m + 1],{i,1,Length[{1/a , 1/b}]}]])
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
17.7.E23 | \left(1-\frac{a}{q}\right)\left(1-\frac{b}{q}\right)\sum_{k=0}^{n}\frac{\qmultiPochhammersym{ap^{k},bp^{-k}}{q}{n-1}(1-(ap^{2k}/b))}{\qPochhammer{p}{p}{n}\qPochhammer{p}{p}{n-k}\qPochhammer{ap^{k}/b}{q}{n+1}}(-1)^{k}p^{\binom{k}{2}} = \Kroneckerdelta{n}{0} |
|
Error
|
(1 -Divide[a,q])*(1 -Divide[b,q])*Sum[Divide[Product[QPochhammer[Part[{a*(p)^(k), b*(p)^(- k)},i],q,n - 1],{i,1,Length[{a*(p)^(k), b*(p)^(- k)}]}]*(1 -(a*(p)^(2*k)/b)),QPochhammer[p, p, n]*QPochhammer[p, p, n - k]*QPochhammer[a*(p)^(k)/b, q, n + 1]]*(- 1)^(k)* (p)^(Binomial[k,2]), {k, 0, n}, GenerateConditions->None] == KroneckerDelta[n, 0]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |