Legendre and Related Functions - 14.18 Sums
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
14.18.E1 | \FerrersP[]{\nu}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@@{\phi}} = \FerrersP[]{\nu}@{\cos@@{\theta_{1}}}\FerrersP[]{\nu}@{\cos@@{\theta_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\FerrersP[-m]{\nu}@{\cos@@{\theta_{1}}}\FerrersP[m]{\nu}@{\cos@@{\theta_{2}}}\cos@{m\phi} |
|
LegendreP(nu, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi)) = LegendreP(nu, cos(theta[1]))*LegendreP(nu, cos(theta[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cos(theta[1]))*LegendreP(nu, m, cos(theta[2]))*cos(m*phi), m = 1..infinity)
|
LegendreP[\[Nu], Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]] == LegendreP[\[Nu], Cos[Subscript[\[Theta], 1]]]*LegendreP[\[Nu], Cos[Subscript[\[Theta], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, Cos[Subscript[\[Theta], 1]]]*LegendreP[\[Nu], m, Cos[Subscript[\[Theta], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Skipped - Because timed out |
14.18.E2 | \FerrersP[]{n}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@@{\phi}} = \sum_{m=-n}^{n}(-1)^{m}\FerrersP[-m]{n}@{\cos@@{\theta_{1}}}\FerrersP[m]{n}@{\cos@@{\theta_{2}}}\cos@{m\phi} |
|
LegendreP(n, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi)) = sum((- 1)^(m)* LegendreP(n, - m, cos(theta[1]))*LegendreP(n, m, cos(theta[2]))*cos(m*phi), m = - n..n)
|
LegendreP[n, Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]] == Sum[(- 1)^(m)* LegendreP[n, - m, Cos[Subscript[\[Theta], 1]]]*LegendreP[n, m, Cos[Subscript[\[Theta], 2]]]*Cos[m*\[Phi]], {m, - n, n}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Skipped - Because timed out |
14.18.E3 | \FerrersQ[]{\nu}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@@{\phi}} = \FerrersP[]{\nu}@{\cos@@{\theta_{1}}}\FerrersQ[]{\nu}@{\cos@@{\theta_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\FerrersP[-m]{\nu}@{\cos@@{\theta_{1}}}\FerrersQ[m]{\nu}@{\cos@@{\theta_{2}}}\cos@{m\phi} |
|
LegendreQ(nu, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi)) = LegendreP(nu, cos(theta[1]))*LegendreQ(nu, cos(theta[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cos(theta[1]))*LegendreQ(nu, m, cos(theta[2]))*cos(m*phi), m = 1..infinity)
|
LegendreQ[\[Nu], Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]] == LegendreP[\[Nu], Cos[Subscript[\[Theta], 1]]]*LegendreQ[\[Nu], Cos[Subscript[\[Theta], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, Cos[Subscript[\[Theta], 1]]]*LegendreQ[\[Nu], m, Cos[Subscript[\[Theta], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Skipped - Because timed out |
14.18.E4 | \assLegendreP[]{\nu}@{\cosh@@{\xi_{1}}\cosh@@{\xi_{2}}-\sinh@@{\xi_{1}}\sinh@@{\xi_{2}}\cos@@{\phi}} = \assLegendreP[]{\nu}@{\cosh@@{\xi_{1}}}\assLegendreP[]{\nu}@{\cosh@@{\xi_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\assLegendreP[-m]{\nu}@{\cosh@@{\xi_{1}}}\assLegendreP[m]{\nu}@{\cosh@@{\xi_{2}}}\cos@{m\phi} |
|
LegendreP(nu, cosh(xi[1])*cosh(xi[2])- sinh(xi[1])*sinh(xi[2])*cos(phi)) = LegendreP(nu, cosh(xi[1]))*LegendreP(nu, cosh(xi[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cosh(xi[1]))*LegendreP(nu, m, cosh(xi[2]))*cos(m*phi), m = 1..infinity)
|
LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 1]]*Cosh[Subscript[\[Xi], 2]]- Sinh[Subscript[\[Xi], 1]]*Sinh[Subscript[\[Xi], 2]]*Cos[\[Phi]]] == LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 1]]]*LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, 3, Cosh[Subscript[\[Xi], 1]]]*LegendreP[\[Nu], m, 3, Cosh[Subscript[\[Xi], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Skipped - Because timed out |
14.18.E5 | \assLegendreQ[]{\nu}@{\cosh@@{\xi_{1}}\cosh@@{\xi_{2}}-\sinh@@{\xi_{1}}\sinh@@{\xi_{2}}\cos@@{\phi}} = \assLegendreP[]{\nu}@{\cosh@@{\xi_{1}}}\assLegendreQ[]{\nu}@{\cosh@@{\xi_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\assLegendreP[-m]{\nu}@{\cosh@@{\xi_{1}}}\assLegendreQ[m]{\nu}@{\cosh@@{\xi_{2}}}\cos@{m\phi} |
|
LegendreQ(nu, cosh(xi[1])*cosh(xi[2])- sinh(xi[1])*sinh(xi[2])*cos(phi)) = LegendreP(nu, cosh(xi[1]))*LegendreQ(nu, cosh(xi[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cosh(xi[1]))*LegendreQ(nu, m, cosh(xi[2]))*cos(m*phi), m = 1..infinity)
|
LegendreQ[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 1]]*Cosh[Subscript[\[Xi], 2]]- Sinh[Subscript[\[Xi], 1]]*Sinh[Subscript[\[Xi], 2]]*Cos[\[Phi]]] == LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 1]]]*LegendreQ[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, 3, Cosh[Subscript[\[Xi], 1]]]*LegendreQ[\[Nu], m, 3, Cosh[Subscript[\[Xi], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Skipped - Because timed out |
14.18.E6 | (x-y)\sum_{k=0}^{n}(2k+1)\assLegendreP[]{k}@{x}\assLegendreP[]{k}@{y} = (n+1)\left(\assLegendreP[]{n+1}@{x}\assLegendreP[]{n}@{y}-\assLegendreP[]{n}@{x}\assLegendreP[]{n+1}@{y}\right) |
|
(x - y)*sum((2*k + 1)*LegendreP(k, x)*LegendreP(k, y), k = 0..n) = (n + 1)*(LegendreP(n + 1, x)*LegendreP(n, y)- LegendreP(n, x)*LegendreP(n + 1, y))
|
(x - y)*Sum[(2*k + 1)*LegendreP[k, 0, 3, x]*LegendreP[k, 0, 3, y], {k, 0, n}, GenerateConditions->None] == (n + 1)*(LegendreP[n + 1, 0, 3, x]*LegendreP[n, 0, 3, y]- LegendreP[n, 0, 3, x]*LegendreP[n + 1, 0, 3, y])
|
Aborted | Aborted | Manual Skip! | Failed [42 / 54]
Result: Plus[17.25, Times[0.75, Plus[-28.0625, Times[8.0, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[-1, Power[Plus[1, ο ], 3], Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], ο [ο ]], Times[Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], Plus[1, Times[3, ο ], Times[3, Power[ο , 2]], Power[ο , 3], Times[9, ο , 1.5, -1.5], Times[12, Power[ο , 2], 1.5, -1.5], Times[4, Power[ο , 3], 1.5, -1.5]], ο [Plus[1, ο ]]], Times[-1, ο , Plus[3, ο ], Plus[-55, Times[-127, ο ], Times[-102, Power[ο , 2]], Times[-34, Power[ο , 3]], Times[-4, Power[ο , 4]], Times[105, Power[1.5, 2]], Times[247, ο , Power[1.5, 2]], Times[202, Power[ο , 2], Power[1.5, 2]], Times[68, Power[ο , 3], Power[1.5, 2]], Times[8, Power[ο , 4], Power[1.5, 2]], Times[126, 1.5, -1.5], Times[267, ο , 1.5, -1.5], Times[206, Power[ο , 2], 1.5, -1.5], Times[68, Power[ο , 3], 1.5, -1.5], Times[8, Power[ο , 4], 1.5, -1.5], Times[105, Power[-1.5, 2]], Times[247, ο , Power[-1.5, 2]], Times[202, Power[ο , 2], Power[-1.5,<syntaxhighlight lang=mathematica>Result: Plus[-106.73437499999997, Times[0.75, Plus[-28.0625, Times[8.0, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[-1, Power[Plus[1, ο ], 3], Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], ο [ο ]], Times[Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], Plus[1, Times[3, ο ], Times[3, Power[ο , 2]], Power[ο , 3], Times[9, ο , 1.5, -1.5], Times[12, Power[ο , 2], 1.5, -1.5], Times[4, Power[ο , 3], 1.5, -1.5]], ο [Plus[1, ο ]]], Times[-1, ο , Plus[3, ο ], Plus[-55, Times[-127, ο ], Times[-102, Power[ο , 2]], Times[-34, Power[ο , 3]], Times[-4, Power[ο , 4]], Times[105, Power[1.5, 2]], Times[247, ο , Power[1.5, 2]], Times[202, Power[ο , 2], Power[1.5, 2]], Times[68, Power[ο , 3], Power[1.5, 2]], Times[8, Power[ο , 4], Power[1.5, 2]], Times[126, 1.5, -1.5], Times[267, ο , 1.5, -1.5], Times[206, Power[ο , 2], 1.5, -1.5], Times[68, Power[ο , 3], 1.5, -1.5], Times[8, Power[ο , 4], 1.5, -1.5], Times[105, Power[-1.5, 2]], Times[247, ο , Power[-1.5, 2]], Times[202, Power[ο , 2], Power[-1.5, 2]], Times[68, Power[ο , 3], Power[-1.5, 2]], Times[8, Power[ο , 4], Power[-1.5, 2]]], ο [Plus[2, ο ]]], Times[ο , Plus[1, ο ], Plus[-165, Times[-271, ο ], Times[-162, Power[ο , 2]], Times[-42, Power[ο , 3]], Times[-4, Power[ο , 4]], Times[315, Power[1.5, 2]], Times[531, ο , Power[1.5, 2]], Times[322, Power[ο , 2], Power[1.5, 2]], Times[84, Power[ο , 3], Power[1.5, 2]], Times[8, Power[ο , 4], Power[1.5, 2]], Times[294, 1.5, -1.5], Times[511, ο , 1.5, -1.5], Times[318, Power[ο , 2], 1.5, -1.5], Times[84, Power[ο , 3], 1.5, -1.5], Times[8, Power[ο , 4], 1.5, -1.5], Times[315, Power[-1.5, 2]], Times[531, ο , Power[-1.5, 2]], Times[322, Power[ο , 2], Power[-1.5, 2]], Times[84, Power[ο , 3], Power[-1.5, 2]], Times[8, Power[ο , 4], Power[-1.5, 2]]], ο [Plus[3, ο ]]], Times[-1, ο , Plus[1, ο ], Plus[2, ο ], Plus[3, Times[2, ο ]], Plus[12, Times[7, ο ], Power[ο , 2], Times[49, 1.5, -1.5], Times[28, ο , 1.5, -1.5], Times[4, Power[ο , 2], 1.5, -1.5]], ο [Plus[4, ο ]]], Times[ο , Plus[1, ο ], Plus[2, ο ], Plus[3, ο ], Plus[4, ο ], Plus[3, Times[2, ο ]], ο [Plus[5, ο ]]]], 0], Equal[ο [1], 0], Equal[ο [2], Times[1.5, -1.5]], Equal[ο [3], Plus[Times[1.5, -1.5], Times[Rational[1, 2], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]]]], Equal[ο [4], Plus[Times[1.5, -1.5], Times[Rational[1, 2], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]], Times[Rational[1, 6], Plus[Times[-4, 1.5], Times[5, 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]], Plus[Times[-2, -1.5], Times[Rational[5, 2], -1.5, Plus[-1, Times[3, Power[-1.5, 2]]]]]]]], Equal[ο [5], Plus[Times[1.5, -1.5], Times[Rational[1, 2], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]], Times[Rational[1, 6], Plus[Times[-4, 1.5], Times[5, 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]], Plus[Times[-2, -1.5], Times[Rational[5, 2], -1.5, Plus[-1, Times[3, Power[-1.5, 2]]]]]], Times[Rational[1, 24], Plus[1, Times[-3, Power[1.5, 2]], Times[-8, Plus[-1, Times[3, Power[1.5, 2]]]], Times[7, 1.5, Plus[Times[-4, 1.5], Times[5, 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]]]], Plus[1, Times[-3, Power[-1.5, 2]], Times[Rational[1, 2], Plus[1, Times[-3, Power[-1.5, 2]]]], Times[Rational[7, 3], -1.5, Plus[Times[-2, -1.5], Times[Rational[5, 2], -1.5, Plus[-1, Times[3, Power[-1.5, 2]]]]]]]]]]}]][3.0]], Times[4.0, DifferenceRoot[Function[{ο , ο }, {Equal[Plus[Times[-1, Power[Plus[1, ο ], 2], Plus[7, Times[2, ο ]], ο [ο ]], Times[Plus[7, Times[2, ο ]], Plus[1, Times[2, ο ], Power[ο , 2], Times[9, 1.5, -1.5], Times[12, ο , 1.5, -1.5], Times[4, Power[ο , 2], 1.5, -1.5]], ο [Plus[1, ο ]]], Times[Plus[55, Times[72, ο ], Times[30, Power[ο , 2]], Times[4, Power[ο , 3]], Times[-105, Power[1.5, 2]], Times[-142, ο , Power[1.5, 2]], Times[-60, Power[ο , 2], Power[1.5, 2]], Times[-8, Power[ο , 3], Power[1.5, 2]], Times[-63, 1.5, -1.5], Times[-102, ο , 1.5, -1.5], Times[-52, Power[ο , 2], 1.5, -1.5], Times[-8, Power[ο , 3], 1.5, -1.5], Times[-105, Power[-1.5, 2]], Times[-142, ο , Power[-1.5, 2]], Times[-60, Power[ο , 2], Power[-1.5, 2]], Times[-8, Power[ο , 3], Power[-1.5, 2]]], ο [Plus[2, ο ]]], Times[Plus[-55, Times[-72, ο ], Times[-30, Power[ο , 2]], Times[-4, Power[ο , 3]], Times[105, Power[1.5, 2]], Times[142, ο , Power[1.5, 2]], Times[60, Power[ο , 2], Power[1.5, 2]], Times[8, Power[ο , 3], Power[1.5, 2]], Times[147, 1.5, -1.5], Times[182, ο , 1.5, -1.5], Times[68, Power[ο , 2], 1.5, -1.5], Times[8, Power[ο , 3], 1.5, -1.5], Times[105, Power[-1.5, 2]], Times[142, ο , Power[-1.5, 2]], Times[60, Power[ο , 2], Power[-1.5, 2]], Times[8, Power[ο , 3], Power[-1.5, 2]]], ο [Plus[3, ο ]]], Times[-1, Plus[3, Times[2, ο ]], Plus[16, Times[8, ο ], Power[ο , 2], Times[49, 1.5, -1.5], Times[28, ο , 1.5, -1.5], Times[4, Power[ο , 2], 1.5, -1.5]], ο [Plus[4, ο ]]], Times[Power[Plus[4, ο ], 2], Plus[3, Times[2, ο ]], ο [Plus[5, ο ]]]], 0], Equal[ο [-3], 0], Equal[ο [-2], Times[Rational[1, 4], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]]], Equal[ο [-1], Plus[Times[1.5, -1.5], Times[Rational[1, 4], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]]]], Equal[ο [0], Plus[1, Times[1.5, -1.5], Times[Rational[1, 4], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]]]], Equal[ο [1], Plus[2, Times[1.5, -1.5], Times[Rational[1, 4], Plus[-1, Times[3, Power[1.5, 2]]], Plus[-1, Times[3, Power[-1.5, 2]]]]]]}]][3.0]]]]], {Rule[n, 2], Rule[x, 1.5], Rule[y, -1.5]}
... skip entries to safe data |
14.18.E7 | (x-y)\sum_{k=0}^{n}(2k+1)\assLegendreP[]{k}@{x}\assLegendreQ[]{k}@{y} = (n+1)\left(\assLegendreP[]{n+1}@{x}\assLegendreQ[]{n}@{y}-\assLegendreP[]{n}@{x}\assLegendreQ[]{n+1}@{y}\right)-1 |
|
(x - y)*sum((2*k + 1)*LegendreP(k, x)*LegendreQ(k, y), k = 0..n) = (n + 1)*(LegendreP(n + 1, x)*LegendreQ(n, y)- LegendreP(n, x)*LegendreQ(n + 1, y))- 1
|
(x - y)*Sum[(2*k + 1)*LegendreP[k, 0, 3, x]*LegendreQ[k, 0, 3, y], {k, 0, n}, GenerateConditions->None] == (n + 1)*(LegendreP[n + 1, 0, 3, x]*LegendreQ[n, 0, 3, y]- LegendreP[n, 0, 3, x]*LegendreQ[n + 1, 0, 3, y])- 1
|
Aborted | Aborted | Manual Skip! | Failed [42 / 54]
Result: Plus[Complex[-0.38140199474411474, 0.0], Times[3.0, Plus[Times[2.0, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[-1, Power[Plus[1, ο ], 3], Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], ο [ο ]], Times[Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], Plus[1, Times[3, ο ], Times[3, Power[ο , 2]], Power[ο , 3], Times[9, ο , 1.5, -1.5], Times[12, Power[ο , 2], 1.5, -1.5], Times[4, Power[ο , 3], 1.5, -1.5]], ο [Plus[1, ο ]]], Times[-1, ο , Plus[3, ο ], Plus[-55, Times[-127, ο ], Times[-102, Power[ο , 2]], Times[-34, Power[ο , 3]], Times[-4, Power[ο , 4]], Times[105, Power[1.5, 2]], Times[247, ο , Power[1.5, 2]], Times[202, Power[ο , 2], Power[1.5, 2]], Times[68, Power[ο , 3], Power[1.5, 2]], Times[8, Power[ο , 4], Power[1.5, 2]], Times[126, 1.5, -1.5], Times[267, ο , 1.5, -1.5], Times[206, Power[ο , 2], 1.5, -1.5], Times[68, Power[ο , 3], 1.5, -1.5], Times[8, Power[ο , 4], 1.5, -1.5], Times[105, Power[-1.5, 2]], Times[247, ο , Power[-1.5, 2]], Times[202, Power[<syntaxhighlight lang=mathematica>Result: Plus[Complex[2.3599248424792147, 0.0], Times[3.0, Plus[Times[2.0, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[-1, Power[Plus[1, ο ], 3], Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], ο [ο ]], Times[Plus[2, ο ], Plus[3, ο ], Plus[7, Times[2, ο ]], Plus[1, Times[3, ο ], Times[3, Power[ο , 2]], Power[ο , 3], Times[9, ο , 1.5, -1.5], Times[12, Power[ο , 2], 1.5, -1.5], Times[4, Power[ο , 3], 1.5, -1.5]], ο [Plus[1, ο ]]], Times[-1, ο , Plus[3, ο ], Plus[-55, Times[-127, ο ], Times[-102, Power[ο , 2]], Times[-34, Power[ο , 3]], Times[-4, Power[ο , 4]], Times[105, Power[1.5, 2]], Times[247, ο , Power[1.5, 2]], Times[202, Power[ο , 2], Power[1.5, 2]], Times[68, Power[ο , 3], Power[1.5, 2]], Times[8, Power[ο , 4], Power[1.5, 2]], Times[126, 1.5, -1.5], Times[267, ο , 1.5, -1.5], Times[206, Power[ο , 2], 1.5, -1.5], Times[68, Power[ο , 3], 1.5, -1.5], Times[8, Power[ο , 4], 1.5, -1.5], Times[105, Power[-1.5, 2]], Times[247, ο , Power[-1.5, 2]], Times[202, Power[ο , 2], Power[-1.5, 2]], Times[68, Power[ο , 3], Power[-1.5, 2]], Times[8, Power[ο , 4], Power[-1.5, 2]]], ο [Plus[2, ο ]]], Times[ο , Plus[1, ο ], Plus[-165, Times[-271, ο ], Times[-162, Power[ο , 2]], Times[-42, Power[ο , 3]], Times[-4, Power[ο , 4]], Times[315, Power[1.5, 2]], Times[531, ο , Power[1.5, 2]], Times[322, Power[ο , 2], Power[1.5, 2]], Times[84, Power[ο , 3], Power[1.5, 2]], Times[8, Power[ο , 4], Power[1.5, 2]], Times[294, 1.5, -1.5], Times[511, ο , 1.5, -1.5], Times[318, Power[ο , 2], 1.5, -1.5], Times[84, Power[ο , 3], 1.5, -1.5], Times[8, Power[ο , 4], 1.5, -1.5], Times[315, Power[-1.5, 2]], Times[531, ο , Power[-1.5, 2]], Times[322, Power[ο , 2], Power[-1.5, 2]], Times[84, Power[ο , 3], Power[-1.5, 2]], Times[8, Power[ο , 4], Power[-1.5, 2]]], ο [Plus[3, ο ]]], Times[-1, ο , Plus[1, ο ], Plus[2, ο ], Plus[3, Times[2, ο ]], Plus[12, Times[7, ο ], Power[ο , 2], Times[49, 1.5, -1.5], Times[28, ο , 1.5, -1.5], Times[4, Power[ο , 2], 1.5, -1.5]], ο [Plus[4, ο ]]], Times[ο , Plus[1, ο ], Plus[2, ο ], Plus[3, ο ], Plus[4, ο ], Plus[3, Times[2, ο ]], ο [Plus[5, ο ]]]], 0], Equal[ο [1], 0], Equal[ο [2], Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]]], Equal[ο [3], Plus[Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 2], Plus[-1, Times[3, Power[1.5, 2]]], Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]]]], Equal[ο [4], Plus[Times[Rational[1, 6], Plus[Times[-4, 1.5], Times[5, 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]], Plus[2, Times[Rational[5, 2], -1.5, Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[-2, -1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 2], Plus[-1, Times[3, Power[1.5, 2]]], Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]]]], Equal[ο [5], Plus[Times[Rational[1, 6], Plus[Times[-4, 1.5], Times[5, 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]], Plus[2, Times[Rational[5, 2], -1.5, Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[-2, -1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 2], Plus[-1, Times[3, Power[1.5, 2]]], Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[Rational[1, 24], Plus[1, Times[-3, Power[1.5, 2]], Times[-8, Plus[-1, Times[3, Power[1.5, 2]]]], Times[7, 1.5, Plus[Times[-4, 1.5], Times[5, 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]]]], Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[7, 3], -1.5, Plus[2, Times[Rational[5, 2], -1.5, Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[-2, -1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[-3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 2], Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[-3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]]}]][3.0]], DifferenceRoot[Function[{ο , ο }, {Equal[Plus[Times[-1, Power[Plus[1, ο ], 2], Plus[7, Times[2, ο ]], ο [ο ]], Times[Plus[7, Times[2, ο ]], Plus[1, Times[2, ο ], Power[ο , 2], Times[9, 1.5, -1.5], Times[12, ο , 1.5, -1.5], Times[4, Power[ο , 2], 1.5, -1.5]], ο [Plus[1, ο ]]], Times[Plus[55, Times[72, ο ], Times[30, Power[ο , 2]], Times[4, Power[ο , 3]], Times[-105, Power[1.5, 2]], Times[-142, ο , Power[1.5, 2]], Times[-60, Power[ο , 2], Power[1.5, 2]], Times[-8, Power[ο , 3], Power[1.5, 2]], Times[-63, 1.5, -1.5], Times[-102, ο , 1.5, -1.5], Times[-52, Power[ο , 2], 1.5, -1.5], Times[-8, Power[ο , 3], 1.5, -1.5], Times[-105, Power[-1.5, 2]], Times[-142, ο , Power[-1.5, 2]], Times[-60, Power[ο , 2], Power[-1.5, 2]], Times[-8, Power[ο , 3], Power[-1.5, 2]]], ο [Plus[2, ο ]]], Times[Plus[-55, Times[-72, ο ], Times[-30, Power[ο , 2]], Times[-4, Power[ο , 3]], Times[105, Power[1.5, 2]], Times[142, ο , Power[1.5, 2]], Times[60, Power[ο , 2], Power[1.5, 2]], Times[8, Power[ο , 3], Power[1.5, 2]], Times[147, 1.5, -1.5], Times[182, ο , 1.5, -1.5], Times[68, Power[ο , 2], 1.5, -1.5], Times[8, Power[ο , 3], 1.5, -1.5], Times[105, Power[-1.5, 2]], Times[142, ο , Power[-1.5, 2]], Times[60, Power[ο , 2], Power[-1.5, 2]], Times[8, Power[ο , 3], Power[-1.5, 2]]], ο [Plus[3, ο ]]], Times[-1, Plus[3, Times[2, ο ]], Plus[16, Times[8, ο ], Power[ο , 2], Times[49, 1.5, -1.5], Times[28, ο , 1.5, -1.5], Times[4, Power[ο , 2], 1.5, -1.5]], ο [Plus[4, ο ]]], Times[Power[Plus[4, ο ], 2], Plus[3, Times[2, ο ]], ο [Plus[5, ο ]]]], 0], Equal[ο [0], 0], Equal[ο [1], Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]], Equal[ο [2], Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]], Equal[ο [3], Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 4], Plus[-1, Times[3, Power[1.5, 2]]], Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]], Equal[ο [4], Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 9], Plus[Times[-2, 1.5], Times[Rational[5, 2], 1.5, Plus[-1, Times[3, Power[1.5, 2]]]]], Plus[2, Times[Rational[5, 2], -1.5, Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[-2, -1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[1, 4], Plus[-1, Times[3, Power[1.5, 2]]], Plus[Times[Rational[1, 2], Log[Plus[-1, -1.5]]], Times[3, -1.5, Plus[-1, Times[-1.5, Plus[Times[Rational[-1, 2], Log[Plus[-1, -1.5]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]]], Times[Rational[-1, 2], Log[Plus[1, -1.5]]]]], Times[Rational[1, 2], Log[Plus[1, -1.5]]]]]}]][3.0]]]], {Rule[n, 2], Rule[x, 1.5], Rule[y, -1.5]}
... skip entries to safe data |
14.18.E8 | \FerrersP[]{\nu}@{-x} = \frac{\sin@{\nu\pi}}{\pi}\sum_{n=0}^{\infty}\frac{2n+1}{(\nu-n)(\nu+n+1)}\FerrersP[]{n}@{x} |
|
LegendreP(nu, - x) = (sin(nu*Pi))/(Pi)*sum((2*n + 1)/((nu - n)*(nu + n + 1))*LegendreP(n, x), n = 0..infinity)
|
LegendreP[\[Nu], - x] == Divide[Sin[\[Nu]*Pi],Pi]*Sum[Divide[2*n + 1,(\[Nu]- n)*(\[Nu]+ n + 1)]*LegendreP[n, x], {n, 0, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Failed [3 / 3]
Result: Plus[Complex[0.07218102573226806, -2.034342748581157], Times[0.3183098861837907, NSum[Times[Power[Plus[Rational[3, 2], Times[-1, n]], -1], Power[Plus[Rational[5, 2], n], -1], Plus[1, Times[2, n]], LegendreP[n, 1.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[Ξ½, Rational[3, 2]]}
Result: Plus[-0.5703494499205765, Times[0.3183098861837907, NSum[Times[Power[Plus[Rational[3, 2], Times[-1, n]], -1], Power[Plus[Rational[5, 2], n], -1], Plus[1, Times[2, n]], LegendreP[n, 0.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5], Rule[Ξ½, Rational[3, 2]]}
... skip entries to safe data |
14.18.E9 | \FerrersP[-\mu]{\nu}@{x} = \frac{\sin@{\nu\pi}}{\pi}\sum_{n=0}^{\infty}(-1)^{n}\frac{2n+1}{(\nu-n)(\nu+n+1)}\FerrersP[-\mu]{n}@{x} |
LegendreP(nu, - mu, x) = (sin(nu*Pi))/(Pi)*sum((- 1)^(n)*(2*n + 1)/((nu - n)*(nu + n + 1))*LegendreP(n, - mu, x), n = 0..infinity)
|
LegendreP[\[Nu], - \[Mu], x] == Divide[Sin[\[Nu]*Pi],Pi]*Sum[(- 1)^(n)*Divide[2*n + 1,(\[Nu]- n)*(\[Nu]+ n + 1)]*LegendreP[n, - \[Mu], x], {n, 0, Infinity}, GenerateConditions->None]
|
Aborted | Failure | Manual Skip! | Failed [3 / 3]
Result: Plus[0.21434568952624797, Times[0.3183098861837907, NSum[Times[Power[-1, n], Power[Plus[Rational[3, 2], Times[-1, n]], -1], Power[Plus[Rational[5, 2], n], -1], Plus[1, Times[2, n]], LegendreP[n, -1.5, 0.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5], Rule[ΞΌ, 1.5], Rule[Ξ½, Rational[3, 2]]}
Result: Plus[0.37125762464284556, Times[0.3183098861837907, NSum[Times[Power[-1, n], Power[Plus[Rational[3, 2], Times[-1, n]], -1], Power[Plus[Rational[5, 2], n], -1], Plus[1, Times[2, n]], LegendreP[n, -0.5, 0.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5], Rule[ΞΌ, 0.5], Rule[Ξ½, Rational[3, 2]]}
... skip entries to safe data |