DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
14.9.E1 |
\frac{\pi\sin@{\mu\pi}}{2\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x} = -\frac{1}{\EulerGamma@{\nu+\mu+1}}\FerrersQ[\mu]{\nu}@{x}+\frac{\cos@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersQ[-\mu]{\nu}@{x} |
|
(Pi*sin(mu*Pi))/(2*GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x) = -(1)/(GAMMA(nu + mu + 1))*LegendreQ(nu, mu, x)+(cos(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreQ(nu, - mu, x)
|
Divide[Pi*Sin[\[Mu]*Pi],2*Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x] == -Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreQ[\[Nu], \[Mu], x]+Divide[Cos[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreQ[\[Nu], - \[Mu], x]
|
Successful |
Successful |
- |
Successful [Tested: 135]
|
14.9.E2 |
\frac{2\sin@{\mu\pi}}{\pi\EulerGamma@{\nu-\mu+1}}\FerrersQ[-\mu]{\nu}@{x} = \frac{1}{\EulerGamma@{\nu+\mu+1}}\FerrersP[\mu]{\nu}@{x}-\frac{\cos@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x} |
|
(2*sin(mu*Pi))/(Pi*GAMMA(nu - mu + 1))*LegendreQ(nu, - mu, x) = (1)/(GAMMA(nu + mu + 1))*LegendreP(nu, mu, x)-(cos(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x)
|
Divide[2*Sin[\[Mu]*Pi],Pi*Gamma[\[Nu]- \[Mu]+ 1]]*LegendreQ[\[Nu], - \[Mu], x] == Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreP[\[Nu], \[Mu], x]-Divide[Cos[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x]
|
Successful |
Successful |
- |
Successful [Tested: 135]
|
14.9.E3 |
\FerrersP[-m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\FerrersP[m]{\nu}@{x} |
|
LegendreP(nu, - m, x) = (- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreP(nu, m, x)
|
LegendreP[\[Nu], - m, x] == (- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreP[\[Nu], m, x]
|
Failure |
Failure |
Successful [Tested: 21] |
Successful [Tested: 21]
|
14.9.E4 |
\FerrersQ[-m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\FerrersQ[m]{\nu}@{x} |
|
LegendreQ(nu, - m, x) = (- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreQ(nu, m, x)
|
LegendreQ[\[Nu], - m, x] == (- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreQ[\[Nu], m, x]
|
Failure |
Failure |
Error |
Successful [Tested: 21]
|
14.9#Ex1 |
\FerrersP[\mu]{-\nu-1}@{x} = \FerrersP[\mu]{\nu}@{x} |
|
LegendreP(- nu - 1, mu, x) = LegendreP(nu, mu, x)
|
LegendreP[- \[Nu]- 1, \[Mu], x] == LegendreP[\[Nu], \[Mu], x]
|
Successful |
Failure |
- |
Successful [Tested: 300]
|
14.9#Ex2 |
\FerrersP[-\mu]{-\nu-1}@{x} = \FerrersP[-\mu]{\nu}@{x} |
|
LegendreP(- nu - 1, - mu, x) = LegendreP(nu, - mu, x)
|
LegendreP[- \[Nu]- 1, - \[Mu], x] == LegendreP[\[Nu], - \[Mu], x]
|
Successful |
Failure |
- |
Successful [Tested: 300]
|
14.9.E6 |
\pi\cos@{\nu\pi}\cos@{\mu\pi}\FerrersP[\mu]{\nu}@{x} = \sin@{(\nu+\mu)\pi}\FerrersQ[\mu]{\nu}@{x}-\sin@{(\nu-\mu)\pi}\FerrersQ[\mu]{-\nu-1}@{x} |
|
Pi*cos(nu*Pi)*cos(mu*Pi)*LegendreP(nu, mu, x) = sin((nu + mu)*Pi)*LegendreQ(nu, mu, x)- sin((nu - mu)*Pi)*LegendreQ(- nu - 1, mu, x)
|
Pi*Cos[\[Nu]*Pi]*Cos[\[Mu]*Pi]*LegendreP[\[Nu], \[Mu], x] == Sin[(\[Nu]+ \[Mu])*Pi]*LegendreQ[\[Nu], \[Mu], x]- Sin[(\[Nu]- \[Mu])*Pi]*LegendreQ[- \[Nu]- 1, \[Mu], x]
|
Successful |
Failure |
- |
Successful [Tested: 3]
|
14.9.E7 |
\frac{\sin@{(\nu-\mu)\pi}}{\EulerGamma@{\nu+\mu+1}}\FerrersP[\mu]{\nu}@{x} = \frac{\sin@{\nu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x}-\frac{\sin@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{-x} |
|
(sin((nu - mu)*Pi))/(GAMMA(nu + mu + 1))*LegendreP(nu, mu, x) = (sin(nu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x)-(sin(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, - x)
|
Divide[Sin[(\[Nu]- \[Mu])*Pi],Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreP[\[Nu], \[Mu], x] == Divide[Sin[\[Nu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x]-Divide[Sin[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], - x]
|
Failure |
Failure |
Successful [Tested: 40] |
Successful [Tested: 45]
|
14.9.E8 |
\tfrac{1}{2}\pi\sin@{(\nu-\mu)\pi}\FerrersP[-\mu]{\nu}@{x} = -\cos@{(\nu-\mu)\pi}\FerrersQ[-\mu]{\nu}@{x}-\FerrersQ[-\mu]{\nu}@{-x} |
|
(1)/(2)*Pi*sin((nu - mu)*Pi)*LegendreP(nu, - mu, x) = - cos((nu - mu)*Pi)*LegendreQ(nu, - mu, x)- LegendreQ(nu, - mu, - x)
|
Divide[1,2]*Pi*Sin[(\[Nu]- \[Mu])*Pi]*LegendreP[\[Nu], - \[Mu], x] == - Cos[(\[Nu]- \[Mu])*Pi]*LegendreQ[\[Nu], - \[Mu], x]- LegendreQ[\[Nu], - \[Mu], - x]
|
Failure |
Failure |
Error |
Successful [Tested: 45]
|
14.9.E9 |
\frac{2}{\EulerGamma@{\nu+\mu+1}\EulerGamma@{\mu-\nu}}\FerrersQ[\mu]{\nu}@{x} = -\cos@{\nu\pi}\FerrersP[-\mu]{\nu}@{x}+\cos@{\mu\pi}\FerrersP[-\mu]{\nu}@{-x} |
|
(2)/(GAMMA(nu + mu + 1)*GAMMA(mu - nu))*LegendreQ(nu, mu, x) = - cos(nu*Pi)*LegendreP(nu, - mu, x)+ cos(mu*Pi)*LegendreP(nu, - mu, - x)
|
Divide[2,Gamma[\[Nu]+ \[Mu]+ 1]*Gamma[\[Mu]- \[Nu]]]*LegendreQ[\[Nu], \[Mu], x] == - Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], x]+ Cos[\[Mu]*Pi]*LegendreP[\[Nu], - \[Mu], - x]
|
Failure |
Failure |
Successful [Tested: 4] |
Successful [Tested: 8]
|
14.9.E10 |
(2/\pi)\sin@{(\nu-\mu)\pi}\FerrersQ[-\mu]{\nu}@{x} = \cos@{(\nu-\mu)\pi}\FerrersP[-\mu]{\nu}@{x}-\FerrersP[-\mu]{\nu}@{-x} |
|
(2/Pi)*sin((nu - mu)*Pi)*LegendreQ(nu, - mu, x) = cos((nu - mu)*Pi)*LegendreP(nu, - mu, x)- LegendreP(nu, - mu, - x)
|
(2/Pi)*Sin[(\[Nu]- \[Mu])*Pi]*LegendreQ[\[Nu], - \[Mu], x] == Cos[(\[Nu]- \[Mu])*Pi]*LegendreP[\[Nu], - \[Mu], x]- LegendreP[\[Nu], - \[Mu], - x]
|
Failure |
Failure |
Error |
Successful [Tested: 45]
|
14.9#Ex3 |
\assLegendreP[-\mu]{-\nu-1}@{x} = \assLegendreP[-\mu]{\nu}@{x} |
|
LegendreP(- nu - 1, - mu, x) = LegendreP(nu, - mu, x)
|
LegendreP[- \[Nu]- 1, - \[Mu], 3, x] == LegendreP[\[Nu], - \[Mu], 3, x]
|
Successful |
Successful |
- |
Successful [Tested: 300]
|
14.9#Ex4 |
\assLegendreP[\mu]{-\nu-1}@{x} = \assLegendreP[\mu]{\nu}@{x} |
|
LegendreP(- nu - 1, mu, x) = LegendreP(nu, mu, x)
|
LegendreP[- \[Nu]- 1, \[Mu], 3, x] == LegendreP[\[Nu], \[Mu], 3, x]
|
Successful |
Successful |
- |
Successful [Tested: 300]
|
14.9.E12 |
\cos@{\nu\pi}\assLegendreP[-\mu]{\nu}@{x} = -\frac{\assLegendreOlverQ[\mu]{\nu}@{x}}{\EulerGamma@{\mu-\nu}}+\frac{\assLegendreOlverQ[\mu]{-\nu-1}@{x}}{\EulerGamma@{\nu+\mu+1}} |
|
cos(nu*Pi)*LegendreP(nu, - mu, x) = -(exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1))/(GAMMA(mu - nu))+(exp(-(mu)*Pi*I)*LegendreQ(- nu - 1,mu,x)/GAMMA(- nu - 1+mu+1))/(GAMMA(nu + mu + 1))
|
Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], 3, x] == -Divide[Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1],Gamma[\[Mu]- \[Nu]]]+Divide[Exp[-(\[Mu]) Pi I] LegendreQ[- \[Nu]- 1, \[Mu], 3, x]/Gamma[- \[Nu]- 1 + \[Mu] + 1],Gamma[\[Nu]+ \[Mu]+ 1]]
|
Failure |
Failure |
Failed [36 / 87] Result: -9.22033570+3.98641277*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -1/2+1/2*I*3^(1/2), x = 3/2}
Result: 4.85982369+35.02749311*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -1/2+1/2*I*3^(1/2), x = 1/2}
... skip entries to safe data |
Successful [Tested: 96]
|
14.9.E13 |
\assLegendreP[-m]{\nu}@{x} = \frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\assLegendreP[m]{\nu}@{x} |
|
LegendreP(nu, - m, x) = (GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreP(nu, m, x)
|
LegendreP[\[Nu], - m, 3, x] == Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreP[\[Nu], m, 3, x]
|
Failure |
Failure |
Failed [15 / 21] Result: -.1566814731+1.035406980*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, m = 1}
Result: .9394863529-.1899097116*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2, m = 1}
... skip entries to safe data |
Successful [Tested: 21]
|
14.9.E14 |
\assLegendreOlverQ[-\mu]{\nu}@{x} = \assLegendreOlverQ[\mu]{\nu}@{x} |
|
exp(-(- mu)*Pi*I)*LegendreQ(nu,- mu,x)/GAMMA(nu+- mu+1) = exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1)
|
Exp[-(- \[Mu]) Pi I] LegendreQ[\[Nu], - \[Mu], 3, x]/Gamma[\[Nu] + - \[Mu] + 1] == Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1]
|
Error |
Successful |
- |
Failed [36 / 300] Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -1.5]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -0.5]}
... skip entries to safe data
|
14.9.E15 |
\frac{2\sin@{\mu\pi}}{\pi}\assLegendreOlverQ[\mu]{\nu}@{x} = \frac{\assLegendreP[\mu]{\nu}@{x}}{\EulerGamma@{\nu+\mu+1}}-\frac{\assLegendreP[-\mu]{\nu}@{x}}{\EulerGamma@{\nu-\mu+1}} |
|
(2*sin(mu*Pi))/(Pi)*exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = (LegendreP(nu, mu, x))/(GAMMA(nu + mu + 1))-(LegendreP(nu, - mu, x))/(GAMMA(nu - mu + 1))
|
Divide[2*Sin[\[Mu]*Pi],Pi]*Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == Divide[LegendreP[\[Nu], \[Mu], 3, x],Gamma[\[Nu]+ \[Mu]+ 1]]-Divide[LegendreP[\[Nu], - \[Mu], 3, x],Gamma[\[Nu]- \[Mu]+ 1]]
|
Failure |
Successful |
Failed [108 / 120] Result: 3.058402749-19.69019192*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: .1602155595-16.40144782*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Successful [Tested: 135]
|
14.9.E16 |
\assLegendreOlverQ[\mu]{\nu}@{x} = \left(\tfrac{1}{2}\pi\right)^{1/2}\left(x^{2}-1\right)^{-1/4}\*\assLegendreP[-\nu-(1/2)]{-\mu-(1/2)}@{x\left(x^{2}-1\right)^{-1/2}} |
|
exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = ((1)/(2)*Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* LegendreP(- mu -(1/2), - nu -(1/2), x*((x)^(2)- 1)^(- 1/2))
|
Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == (Divide[1,2]*Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* LegendreP[- \[Mu]-(1/2), - \[Nu]-(1/2), 3, x*((x)^(2)- 1)^(- 1/2)]
|
Failure |
Failure |
Failed [292 / 300] Result: 13.31105553-5.485346831*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: 8.925040493-5.300266523*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [21 / 300] Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -1.5]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -0.5]}
... skip entries to safe data
|
14.9.E17 |
\assLegendreP[\mu]{\nu}@{x} = (2/\pi)^{1/2}\left(x^{2}-1\right)^{-1/4}\*\assLegendreOlverQ[\nu+(1/2)]{-\mu-(1/2)}@{x\left(x^{2}-1\right)^{-1/2}} |
|
LegendreP(nu, mu, x) = (2/Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* exp(-(nu +(1/2))*Pi*I)*LegendreQ(- mu -(1/2),nu +(1/2),x*((x)^(2)- 1)^(- 1/2))/GAMMA(- mu -(1/2)+nu +(1/2)+1)
|
LegendreP[\[Nu], \[Mu], 3, x] == (2/Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* Exp[-(\[Nu]+(1/2)) Pi I] LegendreQ[- \[Mu]-(1/2), \[Nu]+(1/2), 3, x*((x)^(2)- 1)^(- 1/2)]/Gamma[- \[Mu]-(1/2) + \[Nu]+(1/2) + 1]
|
Failure |
Failure |
Failed [297 / 300] Result: 15.05963282-19.56004465*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: 2.964591568-6.756538622*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [21 / 300] Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, 1.5], Rule[ν, -1.5]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, 1.5], Rule[ν, -0.5]}
... skip entries to safe data
|