Legendre and Related Functions - 14.6 Integer Order
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
14.6.E1 | \FerrersP[m]{\nu}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{\FerrersP[]{\nu}@{x}}{x} |
LegendreP(nu, m, x) = (- 1)^(m)*(1 - (x)^(2))^(m/2)* diff(LegendreP(nu, x), [x$(m)])
|
LegendreP[\[Nu], m, x] == (- 1)^(m)*(1 - (x)^(2))^(m/2)* D[LegendreP[\[Nu], x], {x, m}]
|
Failure | Failure | Failed [3 / 90] Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 3/2, m = 1}
Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 1/2, m = 1}
... skip entries to safe data |
Successful [Tested: 90] | |
14.6.E2 | \FerrersQ[m]{\nu}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{\FerrersQ[]{\nu}@{x}}{x} |
LegendreQ(nu, m, x) = (- 1)^(m)*(1 - (x)^(2))^(m/2)* diff(LegendreQ(nu, x), [x$(m)])
|
LegendreQ[\[Nu], m, x] == (- 1)^(m)*(1 - (x)^(2))^(m/2)* D[LegendreQ[\[Nu], x], {x, m}]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
14.6.E3 | \assLegendreP[m]{\nu}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreP[]{\nu}@{x}}{x} |
|
LegendreP(nu, m, x) = ((x)^(2)- 1)^(m/2)* diff(LegendreP(nu, x), [x$(m)])
|
LegendreP[\[Nu], m, 3, x] == ((x)^(2)- 1)^(m/2)* D[LegendreP[\[Nu], 0, 3, x], {x, m}]
|
Failure | Failure | Failed [3 / 90] Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 3/2, m = 1}
Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 1/2, m = 1}
... skip entries to safe data |
Successful [Tested: 90] |
14.6.E4 | \assLegendreQ[m]{\nu}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreQ[]{\nu}@{x}}{x} |
|
LegendreQ(nu, m, x) = ((x)^(2)- 1)^(m/2)* diff(LegendreQ(nu, x), [x$(m)])
|
LegendreQ[\[Nu], m, 3, x] == ((x)^(2)- 1)^(m/2)* D[LegendreQ[\[Nu], 0, 3, x], {x, m}]
|
Failure | Failure | Error | Failed [75 / 90]
Result: Plus[Complex[-0.4598393885300628, 0.18181080125096066], Times[-1.118033988749895, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[Plus[ο , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, ο , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], ο [ο ]], Times[2, Power[Plus[1, ο ], 2], 1.5, ο [Plus[1, ο ]]], Times[Plus[1, ο ], Plus[2, ο ], Plus[-1, 1.5], Plus[1, 1.5], ο [Plus[2, ο ]]]], 0], Equal[ο [0], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Equal[ο [1], Times[-1, Power[Plus[-1, Power[1.5, 2]], -1], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[Times[1.5, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Times[-1, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 0, 3, 1.5]]]]]}]][1.0]]], {Rule[m, 1], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[1.6909557968522604, -0.413901027514361], Times[-2.5, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[Plus[ο , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, ο , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], ο [ο ]], Times[2, Power[Plus[1, ο ], 2], 1.5, ο [Plus[1, ο ]]], Times[Plus[1, ο ], Plus[2, ο ], Plus[-1, 1.5], Plus[1, 1.5], ο [Plus[2, ο ]]]], 0], Equal[ο [0], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Equal[ο [1], Times[-1, Power[Plus[-1, Power[1.5, 2]], -1], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[Times[1.5, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Times[-1, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 0, 3, 1.5]]]]]}]][2.0]]], {Rule[m, 2], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
14.6.E5 | \Pochhammersym{\nu+1}{m}\assLegendreOlverQ[m]{\nu}@{x} = (-1)^{m}\left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreOlverQ[]{\nu}@{x}}{x} |
|
pochhammer(nu + 1, m)*exp(-(m)*Pi*I)*LegendreQ(nu,m,x)/GAMMA(nu+m+1) = (- 1)^(m)*((x)^(2)- 1)^(m/2)* diff(LegendreQ(nu,x)/GAMMA(nu+1), [x$(m)])
|
Pochhammer[\[Nu]+ 1, m]*Exp[-(m) Pi I] LegendreQ[\[Nu], m, 3, x]/Gamma[\[Nu] + m + 1] == (- 1)^(m)*((x)^(2)- 1)^(m/2)* D[Exp[-(\[Nu]) Pi I] LegendreQ[\[Nu], 2, 3, x]/Gamma[\[Nu] + 3], {x, m}]
|
Failure | Failure | Error | Failed [90 / 90]
Result: Plus[Complex[0.482758812955306, -0.29762130115013324], Times[Complex[-1.0778621920495528, 0.20681719187113978], DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[Plus[ο , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, ο , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], ο [ο ]], Times[2, 1.5, Plus[3, Times[5, ο ], Times[2, Power[ο , 2]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ο [Plus[1, ο ]]], Times[Plus[-12, Times[-8, ο ], Times[-2, Power[ο , 2]], Times[24, Power[1.5, 2]], Times[24, ο , Power[1.5, 2]], Times[6, Power[ο , 2], Power[1.5, 2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-1, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], Times[-1, Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ο [Plus[2, ο ]]], Times[2, P<syntaxhighlight lang=mathematica>Result: Plus[Complex[1.8263637314445087, -0.806860371328253], Times[Complex[2.4101731317997332, -0.4624572999394857], DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[Plus[ο , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, ο , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], ο [ο ]], Times[2, 1.5, Plus[3, Times[5, ο ], Times[2, Power[ο , 2]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ο [Plus[1, ο ]]], Times[Plus[-12, Times[-8, ο ], Times[-2, Power[ο , 2]], Times[24, Power[1.5, 2]], Times[24, ο , Power[1.5, 2]], Times[6, Power[ο , 2], Power[1.5, 2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-1, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], Times[-1, Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ο [Plus[2, ο ]]], Times[2, Plus[3, ο ], Plus[5, Times[2, ο ]], Plus[-1, 1.5], 1.5, Plus[1, 1.5], ο [Plus[3, ο ]]], Times[Plus[3, ο ], Plus[4, ο ], Power[Plus[-1, 1.5], 2], Power[Plus[1, 1.5], 2], ο [Plus[4, ο ]]]], 0], Equal[ο [0], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Equal[ο [1], Times[Power[Plus[-1, Power[1.5, 2]], -1], Plus[Times[-1, 1.5, Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[Plus[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]]]]], Equal[ο [2], Times[Rational[1, 2], Power[Plus[-1, Power[1.5, 2]], -2], Plus[Times[4, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[2, Power[1.5, 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[3, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[2, 1.5, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-2, 1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]]]]], Equal[ο [3], Times[Rational[-1, 6], Power[Plus[-1, Power[1.5, 2]], -3], Plus[Times[30, 1.5, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[6, Power[1.5, 3], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[11, Power[1.5, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-6, 1.5, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[6, Power[1.5, 3], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-1, 1.5, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[Power[1.5, 3], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[6, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[6, Power[1.5, 2], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-7, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-5, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-1, Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]]]]]}]][2.0]]], {Rule[m, 2], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |