Confluent Hypergeometric Functions - 13.20 Uniform Asymptotic Approximations for Large

From testwiki
Revision as of 11:34, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.20.E10 ζ = + x μ - 2 - 2 ln ( x 2 μ ) 𝜁 𝑥 𝜇 2 2 𝑥 2 𝜇 {\displaystyle{\displaystyle\zeta=+\sqrt{\frac{x}{\mu}-2-2\ln\left(\frac{x}{2% \mu}\right)}}}
\zeta = +\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}

zeta = +sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu)))
\[Zeta] == +Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]]
Failure Failure
Failed [300 / 300]
Result: .5521389640+.265842778e-1*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = 1/2*3^(1/2)+1/2*I}

Result: -.8138864400+.3926096818*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.552138964202831, 0.026584277433671977]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.016922323883714174, -1.2016497569691986]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
13.20.E10 ζ = - x μ - 2 - 2 ln ( x 2 μ ) 𝜁 𝑥 𝜇 2 2 𝑥 2 𝜇 {\displaystyle{\displaystyle\zeta=-\sqrt{\frac{x}{\mu}-2-2\ln\left(\frac{x}{2% \mu}\right)}}}
\zeta = -\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}

zeta = -sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu)))
\[Zeta] == -Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]]
Failure Failure
Failed [300 / 300]
Result: 1.179911844+.9734157222*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = 1/2*3^(1/2)+1/2*I}

Result: -.1861135600+1.339441126*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.1799118433660465, 0.9734157225663279]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.7151284836851632, 2.2016497569691986]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data