DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
13.4.E1 |
\OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{a}\EulerGamma@{b-a}}\int_{0}^{1}e^{zt}t^{a-1}(1-t)^{b-a-1}\diff{t} |
|
KummerM(a, b, z)/GAMMA(b) = (1)/(GAMMA(a)*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 0..1)
|
Hypergeometric1F1Regularized[a, b, z] == Divide[1,Gamma[a]*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 0, 1}, GenerateConditions->None]
|
Successful |
Successful |
- |
Successful [Tested: 21]
|
13.4.E2 |
\OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{b-c}}\int_{0}^{1}\OlverconfhyperM@{a}{c}{zt}t^{c-1}(1-t)^{b-c-1}\diff{t} |
|
KummerM(a, b, z)/GAMMA(b) = (1)/(GAMMA(b - c))*int(KummerM(a, c, z*t)/GAMMA(c)*(t)^(c - 1)*(1 - t)^(b - c - 1), t = 0..1)
|
Hypergeometric1F1Regularized[a, b, z] == Divide[1,Gamma[b - c]]*Integrate[Hypergeometric1F1Regularized[a, c, z*t]*(t)^(c - 1)*(1 - t)^(b - c - 1), {t, 0, 1}, GenerateConditions->None]
|
Successful |
Successful |
- |
Successful [Tested: 126]
|
13.4.E3 |
\OlverconfhyperM@{a}{b}{-z} = \frac{z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\BesselJ{b-1}@{2\sqrt{zt}}\diff{t} |
|
KummerM(a, b, - z)/GAMMA(b) = ((z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a))*int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselJ(b - 1, 2*sqrt(z*t)), t = 0..infinity)
|
Hypergeometric1F1Regularized[a, b, - z] == Divide[(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]]*Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselJ[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Error |
Skipped - Because timed out
|
13.4.E4 |
\KummerconfhyperU@{a}{b}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-zt}t^{a-1}(1+t)^{b-a-1}\diff{t} |
|
KummerU(a, b, z) = (1)/(GAMMA(a))*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[1,Gamma[a]]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, 0, Infinity}, GenerateConditions->None]
|
Successful |
Successful |
- |
Successful [Tested: 90]
|
13.4.E5 |
\KummerconfhyperU@{a}{b}{z} = \frac{z^{1-a}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\KummerconfhyperU@{b-a}{b}{t}e^{-t}t^{a-1}}{t+z}\diff{t} |
|
KummerU(a, b, z) = ((z)^(1 - a))/(GAMMA(a)*GAMMA(1 + a - b))*int((KummerU(b - a, b, t)*exp(- t)*(t)^(a - 1))/(t + z), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[(z)^(1 - a),Gamma[a]*Gamma[1 + a - b]]*Integrate[Divide[HypergeometricU[b - a, b, t]*Exp[- t]*(t)^(a - 1),t + z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Skipped - Because timed out |
Skipped - Because timed out
|
13.4.E6 |
\KummerconfhyperU@{a}{b}{z} = \frac{(-1)^{n}z^{1-b-n}}{\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\OlverconfhyperM@{b-a}{b}{t}e^{-t}t^{b+n-1}}{t+z}\diff{t} |
|
KummerU(a, b, z) = ((- 1)^(n)* (z)^(1 - b - n))/(GAMMA(1 + a - b))*int((KummerM(b - a, b, t)/GAMMA(b)*exp(- t)*(t)^(b + n - 1))/(t + z), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[(- 1)^(n)* (z)^(1 - b - n),Gamma[1 + a - b]]*Integrate[Divide[Hypergeometric1F1Regularized[b - a, b, t]*Exp[- t]*(t)^(b + n - 1),t + z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Skipped - Because timed out |
Skipped - Because timed out
|
13.4.E7 |
\KummerconfhyperU@{a}{b}{z} = \frac{2z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}\*\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\modBesselK{b-1}@{2\sqrt{zt}}\diff{t} |
|
KummerU(a, b, z) = (2*(z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a)*GAMMA(a - b + 1))* int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselK(b - 1, 2*sqrt(z*t)), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[2*(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]*Gamma[a - b + 1]]* Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselK[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]
|
Successful |
Aborted |
- |
Skipped - Because timed out
|
13.4.E8 |
\KummerconfhyperU@{a}{b}{z} = z^{c-a}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@{a,a-b+1}{c}{-t}\diff{t} |
|
KummerU(a, b, z) = (z)^(c - a)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([a , a - b + 1], [c], - t), t = 0..infinity)
|
HypergeometricU[a, b, z] == (z)^(c - a)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{a , a - b + 1}, {c}, - t], {t, 0, Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Failed [294 / 300] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)}
... skip entries to safe data |
Skipped - Because timed out
|
13.4.E9 |
\OlverconfhyperM@{a}{b}{z} = \frac{\EulerGamma@{1+a-b}}{2\pi\iunit\EulerGamma@{a}}\int_{0}^{(1+)}e^{zt}t^{a-1}{(t-1)^{b-a-1}}\diff{t} |
|
KummerM(a, b, z)/GAMMA(b) = (GAMMA(1 + a - b))/(2*Pi*I*GAMMA(a))*int(exp(z*t)*(t)^(a - 1)*(t - 1)^(b - a - 1), t = 0..(1 +))
|
Hypergeometric1F1Regularized[a, b, z] == Divide[Gamma[1 + a - b],2*Pi*I*Gamma[a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(t - 1)^(b - a - 1), {t, 0, (1 +)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E10 |
\OlverconfhyperM@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit\EulerGamma@{b-a}}\int_{1}^{(0+)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t} |
|
KummerM(a, b, z)/GAMMA(b) = exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 1..(0 +))
|
Hypergeometric1F1Regularized[a, b, z] == Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 1, (0 +)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E11 |
\OlverconfhyperM@{a}{b}{z} = e^{-b\pi\iunit}\EulerGamma@{1-a}\EulerGamma@{1+a-b}\*\frac{1}{4\pi^{2}}\int_{\alpha}^{(0+,1+,0-,1-)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t} |
|
KummerM(a, b, z)/GAMMA(b) = exp(- b*Pi*I)*GAMMA(1 - a)*GAMMA(1 + a - b)*(1)/(4*(Pi)^(2))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = alpha..(0 + , 1 + , 0 - , 1 -))
|
Hypergeometric1F1Regularized[a, b, z] == Exp[- b*Pi*I]*Gamma[1 - a]*Gamma[1 + a - b]*Divide[1,4*(Pi)^(2)]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, \[Alpha], (0 + , 1 + , 0 - , 1 -)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E12 |
\OlverconfhyperM@{a}{c}{z} = \frac{\EulerGamma@{b}}{2\pi\iunit}z^{1-b}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\genhyperOlverF{2}{1}@{a,b}{c}{\ifrac{1}{t}}\diff{t} |
|
KummerM(a, c, z)/GAMMA(c) = (GAMMA(b))/(2*Pi*I)*(z)^(1 - b)* int(exp(z*t)*(t)^(- b)* hypergeom([a , b], [c], (1)/(t)), t = - infinity..(0 + , 1 +))
|
Hypergeometric1F1Regularized[a, c, z] == Divide[Gamma[b],2*Pi*I]*(z)^(1 - b)* Integrate[Exp[z*t]*(t)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[1,t]], {t, - Infinity, (0 + , 1 +)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E13 |
\OlverconfhyperM@{a}{b}{z} = \frac{z^{1-b}}{2\pi\iunit}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\!\left(1-\frac{1}{t}\right)^{-a}\diff{t} |
|
KummerM(a, b, z)/GAMMA(b) = ((z)^(1 - b))/(2*Pi*I)*int(exp(z*t)*(t)^(- b)*(1 -(1)/(t))^(- a), t = - infinity..(0 + , 1 +))
|
Hypergeometric1F1Regularized[a, b, z] == Divide[(z)^(1 - b),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- b)*(1 -Divide[1,t])^(- a), {t, - Infinity, (0 + , 1 +)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E14 |
\KummerconfhyperU@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit}\int_{\infty}^{(0+)}e^{-zt}t^{a-1}{(1+t)^{b-a-1}}\diff{t} |
|
KummerU(a, b, z) = exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I)*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = infinity..(0 +))
|
HypergeometricU[a, b, z] == Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, Infinity, (0 +)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E15 |
\frac{\KummerconfhyperU@{a}{b}{z}}{\EulerGamma@{c}\EulerGamma@{c-b+1}} = \frac{z^{1-c}}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt}t^{-c}\genhyperOlverF{2}{1}@{a,c}{a+c-b+1}{1-\frac{1}{t}}\diff{t} |
|
(KummerU(a, b, z))/(GAMMA(c)*GAMMA(c - b + 1)) = ((z)^(1 - c))/(2*Pi*I)*int(exp(z*t)*(t)^(- c)* hypergeom([a , c], [a + c - b + 1], 1 -(1)/(t)), t = - infinity..(0 +))
|
Divide[HypergeometricU[a, b, z],Gamma[c]*Gamma[c - b + 1]] == Divide[(z)^(1 - c),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- c)* HypergeometricPFQRegularized[{a , c}, {a + c - b + 1}, 1 -Divide[1,t]], {t, - Infinity, (0 +)}, GenerateConditions->None]
|
Error |
Failure |
- |
Error
|
13.4.E16 |
\OlverconfhyperM@{a}{b}{-z} = \frac{1}{2\pi\iunit\EulerGamma@{a}}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{-t}}{\EulerGamma@{b+t}}z^{t}\diff{t} |
|
KummerM(a, b, - z)/GAMMA(b) = (1)/(2*Pi*I*GAMMA(a))*int((GAMMA(a + t)*GAMMA(- t))/(GAMMA(b + t))*(z)^(t), t = - I*infinity..I*infinity)
|
Hypergeometric1F1Regularized[a, b, - z] == Divide[1,2*Pi*I*Gamma[a]]*Integrate[Divide[Gamma[a + t]*Gamma[- t],Gamma[b + t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Skipped - Because timed out |
Skipped - Because timed out
|
13.4.E17 |
\KummerconfhyperU@{a}{b}{z} = \frac{z^{-a}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{1+a-b+t}\EulerGamma@{-t}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}z^{-t}\diff{t} |
|
KummerU(a, b, z) = ((z)^(- a))/(2*Pi*I)*int((GAMMA(a + t)*GAMMA(1 + a - b + t)*GAMMA(- t))/(GAMMA(a)*GAMMA(1 + a - b))*(z)^(- t), t = - I*infinity..I*infinity)
|
HypergeometricU[a, b, z] == Divide[(z)^(- a),2*Pi*I]*Integrate[Divide[Gamma[a + t]*Gamma[1 + a - b + t]*Gamma[- t],Gamma[a]*Gamma[1 + a - b]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Skipped - Because timed out |
Skipped - Because timed out
|
13.4.E18 |
\KummerconfhyperU@{a}{b}{z} = \frac{z^{1-b}e^{z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{b-1+t}\EulerGamma@{t}}{\EulerGamma@{a+t}}z^{-t}\diff{t} |
|
KummerU(a, b, z) = ((z)^(1 - b)* exp(z))/(2*Pi*I)*int((GAMMA(b - 1 + t)*GAMMA(t))/(GAMMA(a + t))*(z)^(- t), t = - I*infinity..I*infinity)
|
HypergeometricU[a, b, z] == Divide[(z)^(1 - b)* Exp[z],2*Pi*I]*Integrate[Divide[Gamma[b - 1 + t]*Gamma[t],Gamma[a + t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
|
Failure |
Aborted |
Skipped - Because timed out |
Skipped - Because timed out
|