Parabolic Cylinder Functions - 13.2 Definitions and Basic Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
13.2.E1 | z\deriv[2]{w}{z}+(b-z)\deriv{w}{z}-aw = 0 |
|
z*diff(w, [z$(2)])+(b - z)*diff(w, z)- a*w = 0
|
z*D[w, {z, 2}]+(b - z)*D[w, z]- a*w == 0
|
Failure | Failure | Failed [300 / 300] Result: 1.299038106+.7500000000*I
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: 1.299038106+.7500000000*I
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.2.E2 | \KummerconfhyperM@{a}{b}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}}{\Pochhammersym{b}{s}s!}z^{s} |
|
KummerM(a, b, z) = sum((pochhammer(a, s))/(pochhammer(b, s)*factorial(s))*(z)^(s), s = 0..infinity)
|
Hypergeometric1F1[a, b, z] == Sum[Divide[Pochhammer[a, s],Pochhammer[b, s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 252] |
13.2.E3 | \OlverconfhyperM@{a}{b}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}}{\EulerGamma@{b+s}s!}z^{s} |
KummerM(a, b, z)/GAMMA(b) = sum((pochhammer(a, s))/(GAMMA(b + s)*factorial(s))*(z)^(s), s = 0..infinity)
|
Hypergeometric1F1Regularized[a, b, z] == Sum[Divide[Pochhammer[a, s],Gamma[b + s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Failed [35 / 252]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
13.2.E4 | \KummerconfhyperM@{a}{b}{z} = \EulerGamma@{b}\OlverconfhyperM@{a}{b}{z} |
KummerM(a, b, z) = GAMMA(b)*KummerM(a, b, z)/GAMMA(b)
|
Hypergeometric1F1[a, b, z] == Gamma[b]*Hypergeometric1F1Regularized[a, b, z]
|
Successful | Successful | - | Successful [Tested: 126] | |
13.2.E5 | \lim_{b\to-n}\frac{\KummerconfhyperM@{a}{b}{z}}{\EulerGamma@{b}} = \OlverconfhyperM@{a}{-n}{z} |
limit((KummerM(a, b, z))/(GAMMA(b)), b = - n) = KummerM(a, - n, z)/GAMMA(- n)
|
Limit[Divide[Hypergeometric1F1[a, b, z],Gamma[b]], b -> - n, GenerateConditions->None] == Hypergeometric1F1Regularized[a, - n, z]
|
Failure | Successful | Successful [Tested: 0] | Failed [112 / 126]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
13.2.E5 | \OlverconfhyperM@{a}{-n}{z} = \frac{\Pochhammersym{a}{n+1}}{(n+1)!}z^{n+1}\KummerconfhyperM@{a+n+1}{n+2}{z} |
KummerM(a, - n, z)/GAMMA(- n) = (pochhammer(a, n + 1))/(factorial(n + 1))*(z)^(n + 1)* KummerM(a + n + 1, n + 2, z)
|
Hypergeometric1F1Regularized[a, - n, z] == Divide[Pochhammer[a, n + 1],(n + 1)!]*(z)^(n + 1)* Hypergeometric1F1[a + n + 1, n + 2, z]
|
Failure | Failure | Error | Successful [Tested: 126] | |
13.2.E7 | \KummerconfhyperU@{-m}{b}{z} = (-1)^{m}\Pochhammersym{b}{m}\KummerconfhyperM@{-m}{b}{z} |
|
KummerU(- m, b, z) = (- 1)^(m)* pochhammer(b, m)*KummerM(- m, b, z)
|
HypergeometricU[- m, b, z] == (- 1)^(m)* Pochhammer[b, m]*Hypergeometric1F1[- m, b, z]
|
Failure | Failure | Error | Failed [7 / 126]
Result: Indeterminate
Test Values: {Rule[b, -2], Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[b, -2], Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.2.E7 | (-1)^{m}\Pochhammersym{b}{m}\KummerconfhyperM@{-m}{b}{z} = (-1)^{m}\sum_{s=0}^{m}\binom{m}{s}\Pochhammersym{b+s}{m-s}(-z)^{s} |
|
(- 1)^(m)* pochhammer(b, m)*KummerM(- m, b, z) = (- 1)^(m)* sum(binomial(m,s)*pochhammer(b + s, m - s)*(- z)^(s), s = 0..m)
|
(- 1)^(m)* Pochhammer[b, m]*Hypergeometric1F1[- m, b, z] == (- 1)^(m)* Sum[Binomial[m,s]*Pochhammer[b + s, m - s]*(- z)^(s), {s, 0, m}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Failed [21 / 126]
Result: Indeterminate
Test Values: {Rule[b, -2], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[b, -2], Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
13.2.E8 | \KummerconfhyperU@{a}{a+n+1}{z} = \frac{(-1)^{n}\Pochhammersym{1-a-n}{n}}{z^{a+n}}\KummerconfhyperM@{-n}{1-a-n}{z} |
|
KummerU(a, a + n + 1, z) = ((- 1)^(n)* pochhammer(1 - a - n, n))/((z)^(a + n))*KummerM(- n, 1 - a - n, z)
|
HypergeometricU[a, a + n + 1, z] == Divide[(- 1)^(n)* Pochhammer[1 - a - n, n],(z)^(a + n)]*Hypergeometric1F1[- n, 1 - a - n, z]
|
Failure | Failure | Error | Failed [7 / 126]
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.2.E8 | \frac{(-1)^{n}\Pochhammersym{1-a-n}{n}}{z^{a+n}}\KummerconfhyperM@{-n}{1-a-n}{z} = z^{-a}\sum_{s=0}^{n}\binom{n}{s}\Pochhammersym{a}{s}z^{-s} |
|
((- 1)^(n)* pochhammer(1 - a - n, n))/((z)^(a + n))*KummerM(- n, 1 - a - n, z) = (z)^(- a)* sum(binomial(n,s)*pochhammer(a, s)*(z)^(- s), s = 0..n)
|
Divide[(- 1)^(n)* Pochhammer[1 - a - n, n],(z)^(a + n)]*Hypergeometric1F1[- n, 1 - a - n, z] == (z)^(- a)* Sum[Binomial[n,s]*Pochhammer[a, s]*(z)^(- s), {s, 0, n}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [7 / 126]
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.2.E9 | \KummerconfhyperU@{a}{n+1}{z} = \frac{(-1)^{n+1}}{n!\EulerGamma@{a-n}}\sum_{k=0}^{\infty}\frac{\Pochhammersym{a}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{a+k}-\digamma@{1+k}-\digamma@{n+k+1}\right)+\frac{1}{\EulerGamma@{a}}\sum_{k=1}^{n}\frac{(k-1)!\Pochhammersym{1-a+k}{n-k}}{(n-k)!}z^{-k} |
KummerU(a, n + 1, z) = ((- 1)^(n + 1))/(factorial(n)*GAMMA(a - n))*sum((pochhammer(a, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi(a + k)- Psi(1 + k)- Psi(n + k + 1)), k = 0..infinity)+(1)/(GAMMA(a))*sum((factorial(k - 1)*pochhammer(1 - a + k, n - k))/(factorial(n - k))*(z)^(- k), k = 1..n)
|
HypergeometricU[a, n + 1, z] == Divide[(- 1)^(n + 1),(n)!*Gamma[a - n]]*Sum[Divide[Pochhammer[a, k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[a + k]- PolyGamma[1 + k]- PolyGamma[n + k + 1]), {k, 0, Infinity}, GenerateConditions->None]+Divide[1,Gamma[a]]*Sum[Divide[(k - 1)!*Pochhammer[1 - a + k, n - k],(n - k)!]*(z)^(- k), {k, 1, n}, GenerateConditions->None]
|
Aborted | Aborted | Failed [7 / 14] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 2, z = 1/2*3^(1/2)+1/2*I, n = 1}
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 2, z = -1/2+1/2*I*3^(1/2), n = 1}
... skip entries to safe data |
Skipped - Because timed out | |
13.2.E10 | \KummerconfhyperU@{-m}{n+1}{z} = (-1)^{m}\Pochhammersym{n+1}{m}\KummerconfhyperM@{-m}{n+1}{z} |
|
KummerU(- m, n + 1, z) = (- 1)^(m)* pochhammer(n + 1, m)*KummerM(- m, n + 1, z)
|
HypergeometricU[- m, n + 1, z] == (- 1)^(m)* Pochhammer[n + 1, m]*Hypergeometric1F1[- m, n + 1, z]
|
Failure | Failure | Successful [Tested: 63] | Successful [Tested: 63] |
13.2.E10 | (-1)^{m}\Pochhammersym{n+1}{m}\KummerconfhyperM@{-m}{n+1}{z} = (-1)^{m}\sum_{s=0}^{m}\binom{m}{s}\Pochhammersym{n+s+1}{m-s}(-z)^{s} |
|
(- 1)^(m)* pochhammer(n + 1, m)*KummerM(- m, n + 1, z) = (- 1)^(m)* sum(binomial(m,s)*pochhammer(n + s + 1, m - s)*(- z)^(s), s = 0..m)
|
(- 1)^(m)* Pochhammer[n + 1, m]*Hypergeometric1F1[- m, n + 1, z] == (- 1)^(m)* Sum[Binomial[m,s]*Pochhammer[n + s + 1, m - s]*(- z)^(s), {s, 0, m}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 63] | Successful [Tested: 63] |
13.2.E11 | \KummerconfhyperU@{a}{-n}{z} = z^{n+1}\KummerconfhyperU@{a+n+1}{n+2}{z} |
|
KummerU(a, - n, z) = (z)^(n + 1)* KummerU(a + n + 1, n + 2, z)
|
HypergeometricU[a, - n, z] == (z)^(n + 1)* HypergeometricU[a + n + 1, n + 2, z]
|
Failure | Successful | Successful [Tested: 126] | Successful [Tested: 126] |
13.2.E12 | \KummerconfhyperU@{a}{b}{ze^{2\pi\iunit m}} = \frac{2\pi\iunit e^{-\pi\iunit bm}\sin@{\pi bm}}{\EulerGamma@{1+a-b}\sin@{\pi b}}\OlverconfhyperM@{a}{b}{z}+e^{-2\pi\iunit bm}\KummerconfhyperU@{a}{b}{z} |
KummerU(a, b, z*exp(2*Pi*I*m)) = (2*Pi*I*exp(- Pi*I*b*m)*sin(Pi*b*m))/(GAMMA(1 + a - b)*sin(Pi*b))*KummerM(a, b, z)/GAMMA(b)+ exp(- 2*Pi*I*b*m)*KummerU(a, b, z)
|
HypergeometricU[a, b, z*Exp[2*Pi*I*m]] == Divide[2*Pi*I*Exp[- Pi*I*b*m]*Sin[Pi*b*m],Gamma[1 + a - b]*Sin[Pi*b]]*Hypergeometric1F1Regularized[a, b, z]+ Exp[- 2*Pi*I*b*m]*HypergeometricU[a, b, z]
|
Failure | Failure | Failed [230 / 300] Result: -.101548209-1.031304846*I
Test Values: {a = -3/2, b = -3/2, z = 1/2*3^(1/2)+1/2*I, m = 1}
Result: -.101548218-1.031304823*I
Test Values: {a = -3/2, b = -3/2, z = 1/2*3^(1/2)+1/2*I, m = 3}
... skip entries to safe data |
Failed [230 / 300]
Result: Complex[-0.10154820915393259, -1.0313048488210503]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.1015482091539317, -1.03130484882105]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
13.2.E33 | \Wronskian@{\OlverconfhyperM@{a}{b}{z},z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z}} = \sin@{\pi b}z^{-b}e^{z}/\pi |
(KummerM(a, b, z)/GAMMA(b))*diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b)) = sin(Pi*b)*(z)^(- b)* exp(z)/Pi
|
Wronskian[{Hypergeometric1F1Regularized[a, b, z], (z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z]}, z] == Sin[Pi*b]*(z)^(- b)* Exp[z]/Pi
|
Failure | Failure | Error | Successful [Tested: 252] | |
13.2.E34 | \Wronskian@{\OlverconfhyperM@{a}{b}{z},\KummerconfhyperU@{a}{b}{z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{a}} |
(KummerM(a, b, z)/GAMMA(b))*diff(KummerU(a, b, z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(KummerU(a, b, z)) = -((z)^(- b)* exp(z))/(GAMMA(a))
|
Wronskian[{Hypergeometric1F1Regularized[a, b, z], HypergeometricU[a, b, z]}, z] == -Divide[(z)^(- b)* Exp[z],Gamma[a]]
|
Failure | Failure | Error | Successful [Tested: 126] | |
13.2.E35 | \Wronskian@{\OlverconfhyperM@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} = \ifrac{e^{- b\pi\iunit}z^{-b}e^{z}}{\EulerGamma@{b-a}} |
(KummerM(a, b, z)/GAMMA(b))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z)) = (exp(- b*Pi*I)*(z)^(- b)* exp(z))/(GAMMA(b - a))
|
Wronskian[{Hypergeometric1F1Regularized[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z] == Divide[Exp[- b*Pi*I]*(z)^(- b)* Exp[z],Gamma[b - a]]
|
Failure | Failure | Failed [23 / 105] Result: -.6693440963-2.281274239*I
Test Values: {a = -3/2, b = 3/2, z = 1/2*3^(1/2)+1/2*I}
Result: -.4620307839+.3929465556*I
Test Values: {a = -3/2, b = 3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [20 / 105]
Result: Complex[-0.6693440961046373, -2.2812742393329124]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.46203078407110554, 0.39294655583435506]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
13.2.E35 | \Wronskian@{\OlverconfhyperM@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} = \ifrac{e^{+ b\pi\iunit}z^{-b}e^{z}}{\EulerGamma@{b-a}} |
(KummerM(a, b, z)/GAMMA(b))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z)) = (exp(+ b*Pi*I)*(z)^(- b)* exp(z))/(GAMMA(b - a))
|
Wronskian[{Hypergeometric1F1Regularized[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z] == Divide[Exp[+ b*Pi*I]*(z)^(- b)* Exp[z],Gamma[b - a]]
|
Failure | Failure | Failed [53 / 105] Result: -1.068139482+1.255929884*I
Test Values: {a = -3/2, b = 3/2, z = 1/2-1/2*I*3^(1/2)}
Result: .1184211651-.4036057902*I
Test Values: {a = -3/2, b = 3/2, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [50 / 105]
Result: Complex[-1.0681394822800954, 1.2559298845291709]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
Result: Complex[0.11842116492450601, -0.40360579036441874]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
... skip entries to safe data | |
13.2.E36 | \Wronskian@{z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z},\KummerconfhyperU@{a}{b}{z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{a-b+1}} |
((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(KummerU(a, b, z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(KummerU(a, b, z)) = -((z)^(- b)* exp(z))/(GAMMA(a - b + 1))
|
Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], HypergeometricU[a, b, z]}, z] == -Divide[(z)^(- b)* Exp[z],Gamma[a - b + 1]]
|
Failure | Failure | Error | Successful [Tested: 161] | |
13.2.E37 | \Wronskian@{z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{1-a}} |
((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z)) = -((z)^(- b)* exp(z))/(GAMMA(1 - a))
|
Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z] == -Divide[(z)^(- b)* Exp[z],Gamma[1 - a]]
|
Failure | Aborted | Error | Successful [Tested: 168] | |
13.2.E37 | \Wronskian@{z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{1-a}} |
((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z)) = -((z)^(- b)* exp(z))/(GAMMA(1 - a))
|
Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z] == -Divide[(z)^(- b)* Exp[z],Gamma[1 - a]]
|
Failure | Aborted | Error | Successful [Tested: 168] | |
13.2.E38 | \Wronskian@{\KummerconfhyperU@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} = e^{+(a-b)\pi\iunit}z^{-b}e^{z} |
|
(KummerU(a, b, z))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff(KummerU(a, b, z), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z)) = exp(+(a - b)*Pi*I)*(z)^(- b)* exp(z)
|
Wronskian[{HypergeometricU[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z] == Exp[+(a - b)*Pi*I]*(z)^(- b)* Exp[z]
|
Failure | Aborted | Failed [38 / 252] Result: 4.753561418-.1121990572*I
Test Values: {a = -3/2, b = -2, z = 1/2*3^(1/2)+1/2*I}
Result: -1.142634185-.4073142366*I
Test Values: {a = -3/2, b = -2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [32 / 252]
Result: Complex[4.753561408836843, -0.1121990577209182]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.1426341834354088, -0.40731423683768475]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.2.E38 | \Wronskian@{\KummerconfhyperU@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} = e^{-(a-b)\pi\iunit}z^{-b}e^{z} |
|
(KummerU(a, b, z))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff(KummerU(a, b, z), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z)) = exp(-(a - b)*Pi*I)*(z)^(- b)* exp(z) |
Wronskian[{HypergeometricU[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z] == Exp[-(a - b)*Pi*I]*(z)^(- b)* Exp[z] |
Failure | Aborted | Failed [80 / 252] Result: .5941419621-3.243473855*I
Test Values: {a = -3/2, b = -2, z = 1/2-1/2*I*3^(1/2)} Result: -.4376938533+.7184072077*I
Test Values: {a = -3/2, b = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [80 / 252]
Result: Complex[0.5941419683502733, -3.243473853028733]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} Result: Complex[-0.4376938536795689, 0.7184072074542298]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
13.2.E39 | \KummerconfhyperM@{a}{b}{z} = e^{z}\KummerconfhyperM@{b-a}{b}{-z} |
|
KummerM(a, b, z) = exp(z)*KummerM(b - a, b, - z) |
Hypergeometric1F1[a, b, z] == Exp[z]*Hypergeometric1F1[b - a, b, - z] |
Failure | Successful | Error | Failed [42 / 252]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.2.E40 | \KummerconfhyperU@{a}{b}{z} = z^{1-b}\KummerconfhyperU@{a-b+1}{2-b}{z} |
|
KummerU(a, b, z) = (z)^(1 - b)* KummerU(a - b + 1, 2 - b, z) |
HypergeometricU[a, b, z] == (z)^(1 - b)* HypergeometricU[a - b + 1, 2 - b, z] |
Successful | Successful | - | Successful [Tested: 252] |
13.2.E41 | \frac{1}{\EulerGamma@{b}}\KummerconfhyperM@{a}{b}{z} = \frac{e^{- a\pi\iunit}}{\EulerGamma@{b-a}}\KummerconfhyperU@{a}{b}{z}+\frac{e^{+(b-a)\pi\iunit}}{\EulerGamma@{a}}e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z} |
(1)/(GAMMA(b))*KummerM(a, b, z) = (exp(- a*Pi*I))/(GAMMA(b - a))*KummerU(a, b, z)+(exp(+(b - a)*Pi*I))/(GAMMA(a))*exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z) |
Divide[1,Gamma[b]]*Hypergeometric1F1[a, b, z] == Divide[Exp[- a*Pi*I],Gamma[b - a]]*HypergeometricU[a, b, z]+Divide[Exp[+(b - a)*Pi*I],Gamma[a]]*Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z] |
Failure | Failure | Failed [6 / 21] Result: 3.583210384+1.512741910*I
Test Values: {a = 3/2, b = 2, z = 1/2*3^(1/2)+1/2*I} Result: 1.096602540+.7868998856*I
Test Values: {a = 3/2, b = 2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [6 / 21]
Result: Complex[3.583210382577498, 1.512741908514331]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.096602539454242, 0.7868998849931845]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
13.2.E41 | \frac{1}{\EulerGamma@{b}}\KummerconfhyperM@{a}{b}{z} = \frac{e^{+ a\pi\iunit}}{\EulerGamma@{b-a}}\KummerconfhyperU@{a}{b}{z}+\frac{e^{-(b-a)\pi\iunit}}{\EulerGamma@{a}}e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z} |
(1)/(GAMMA(b))*KummerM(a, b, z) = (exp(+ a*Pi*I))/(GAMMA(b - a))*KummerU(a, b, z)+(exp(-(b - a)*Pi*I))/(GAMMA(a))*exp(z)*KummerU(b - a, b, exp(- Pi*I)*z) |
Divide[1,Gamma[b]]*Hypergeometric1F1[a, b, z] == Divide[Exp[+ a*Pi*I],Gamma[b - a]]*HypergeometricU[a, b, z]+Divide[Exp[-(b - a)*Pi*I],Gamma[a]]*Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z] |
Failure | Failure | Failed [15 / 21] Result: 2.239690726-1.798422043*I
Test Values: {a = 3/2, b = 2, z = 1/2-1/2*I*3^(1/2)} Result: .9984283068-.3592011980*I
Test Values: {a = 3/2, b = 2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [15 / 21]
Result: Complex[2.239690726834086, -1.7984220417127512]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} Result: Complex[0.9984283065924617, -0.35920119796837185]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
13.2.E42 | \KummerconfhyperU@{a}{b}{z} = \frac{\EulerGamma@{1-b}}{\EulerGamma@{a-b+1}}\KummerconfhyperM@{a}{b}{z}+\frac{\EulerGamma@{b-1}}{\EulerGamma@{a}}z^{1-b}\KummerconfhyperM@{a-b+1}{2-b}{z} |
KummerU(a, b, z) = (GAMMA(1 - b))/(GAMMA(a - b + 1))*KummerM(a, b, z)+(GAMMA(b - 1))/(GAMMA(a))*(z)^(1 - b)* KummerM(a - b + 1, 2 - b, z) |
HypergeometricU[a, b, z] == Divide[Gamma[1 - b],Gamma[a - b + 1]]*Hypergeometric1F1[a, b, z]+Divide[Gamma[b - 1],Gamma[a]]*(z)^(1 - b)* Hypergeometric1F1[a - b + 1, 2 - b, z] |
Successful | Successful | - | - |