Parabolic Cylinder Functions - 12.17 Physical Applications

From testwiki
Revision as of 11:31, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.17.E4 1 ξ 2 + η 2 ( 2 w ξ 2 + 2 w η 2 ) + 2 w ζ 2 + k 2 w = 0 1 superscript 𝜉 2 superscript 𝜂 2 partial-derivative 𝑤 𝜉 2 partial-derivative 𝑤 𝜂 2 partial-derivative 𝑤 𝜁 2 superscript 𝑘 2 𝑤 0 {\displaystyle{\displaystyle\frac{1}{\xi^{2}+\eta^{2}}\left(\frac{{\partial}^{% 2}w}{{\partial\xi}^{2}}+\frac{{\partial}^{2}w}{{\partial\eta}^{2}}\right)+% \frac{{\partial}^{2}w}{{\partial\zeta}^{2}}+k^{2}w=0}}
\frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0

(1)/((xi)^(2)+ (eta)^(2))*(diff(w, [xi$(2)])+ diff(w, [eta$(2)]))+ diff(w, [zeta$(2)])+ (k)^(2)* w = 0
Divide[1,\[Xi]^(2)+ \[Eta]^(2)]*(D[w, {\[Xi], 2}]+ D[w, {\[Eta], 2}])+ D[w, {\[Zeta], 2}]+ (k)^(2)* w == 0
Failure Failure
Failed [300 / 300]
Result: .8660254040+.5000000000*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 3.464101616+2.*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.464101615137755, 1.9999999999999998]
Test Values: {Rule[k, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data