Struve and Related Functions - 11.11 Asymptotic Expansions of Anger–Weber Functions

From testwiki
Revision as of 11:30, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
11.11#Ex1 a 0 ( λ ) = 1 1 + λ subscript 𝑎 0 𝜆 1 1 𝜆 {\displaystyle{\displaystyle a_{0}(\lambda)=\frac{1}{1+\lambda}}}
a_{0}(\lambda) = \frac{1}{1+\lambda}

a[0](lambda) = (1)/(1 + lambda)
Subscript[a, 0][\[Lambda]] == Divide[1,1 + \[Lambda]]
Skipped - no semantic math Skipped - no semantic math - -
11.11#Ex2 a 1 ( λ ) = - λ 2 ( 1 + λ ) 4 subscript 𝑎 1 𝜆 𝜆 2 superscript 1 𝜆 4 {\displaystyle{\displaystyle a_{1}(\lambda)=-\frac{\lambda}{2(1+\lambda)^{4}}}}
a_{1}(\lambda) = -\frac{\lambda}{2(1+\lambda)^{4}}

a[1](lambda) = -(lambda)/(2*(1 + lambda)^(4))
Subscript[a, 1][\[Lambda]] == -Divide[\[Lambda],2*(1 + \[Lambda])^(4)]
Skipped - no semantic math Skipped - no semantic math - -
11.11#Ex3 a 2 ( λ ) = 9 λ 2 - λ 24 ( 1 + λ ) 7 subscript 𝑎 2 𝜆 9 superscript 𝜆 2 𝜆 24 superscript 1 𝜆 7 {\displaystyle{\displaystyle a_{2}(\lambda)=\frac{9\lambda^{2}-\lambda}{24(1+% \lambda)^{7}}}}
a_{2}(\lambda) = \frac{9\lambda^{2}-\lambda}{24(1+\lambda)^{7}}

a[2](lambda) = (9*(lambda)^(2)- lambda)/(24*(1 + lambda)^(7))
Subscript[a, 2][\[Lambda]] == Divide[9*\[Lambda]^(2)- \[Lambda],24*(1 + \[Lambda])^(7)]
Skipped - no semantic math Skipped - no semantic math - -
11.11#Ex4 a 3 ( λ ) = - 225 λ 3 - 54 λ 2 + λ 720 ( 1 + λ ) 10 subscript 𝑎 3 𝜆 225 superscript 𝜆 3 54 superscript 𝜆 2 𝜆 720 superscript 1 𝜆 10 {\displaystyle{\displaystyle a_{3}(\lambda)=-\frac{225\lambda^{3}-54\lambda^{2% }+\lambda}{720(1+\lambda)^{10}}}}
a_{3}(\lambda) = -\frac{225\lambda^{3}-54\lambda^{2}+\lambda}{720(1+\lambda)^{10}}

a[3](lambda) = -(225*(lambda)^(3)- 54*(lambda)^(2)+ lambda)/(720*(1 + lambda)^(10))
Subscript[a, 3][\[Lambda]] == -Divide[225*\[Lambda]^(3)- 54*\[Lambda]^(2)+ \[Lambda],720*(1 + \[Lambda])^(10)]
Skipped - no semantic math Skipped - no semantic math - -
11.11.E12 μ = 1 - λ 2 - ln ( 1 + 1 - λ 2 λ ) 𝜇 1 superscript 𝜆 2 1 1 superscript 𝜆 2 𝜆 {\displaystyle{\displaystyle\mu=\sqrt{1-\lambda^{2}}-\ln\left(\frac{1+\sqrt{1-% \lambda^{2}}}{\lambda}\right)}}
\mu = \sqrt{1-\lambda^{2}}-\ln@{\frac{1+\sqrt{1-\lambda^{2}}}{\lambda}}

mu = sqrt(1 - (lambda)^(2))- ln((1 +sqrt(1 - (lambda)^(2)))/(lambda))
\[Mu] == Sqrt[1 - \[Lambda]^(2)]- Log[Divide[1 +Sqrt[1 - \[Lambda]^(2)],\[Lambda]]]
Failure Failure
Failed [100 / 100]
Result: .6584789489+.2146018366*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I}

Result: -.7075464554+.5806272406*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, mu = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [100 / 100]
Result: Complex[0.6584789484624085, 0.21460183660255172]
Test Values: {Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.70754645532203, 0.5806272403869905]
Test Values: {Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
11.11#Ex5 b 0 ( λ ) = 1 ( 1 - λ 2 ) 1 / 4 subscript 𝑏 0 𝜆 1 superscript 1 superscript 𝜆 2 1 4 {\displaystyle{\displaystyle b_{0}(\lambda)=\frac{1}{(1-\lambda^{2})^{1/4}}}}
b_{0}(\lambda) = \frac{1}{(1-\lambda^{2})^{1/4}}

b[0](lambda) = (1)/((1 - (lambda)^(2))^(1/4))
Subscript[b, 0][\[Lambda]] == Divide[1,(1 - \[Lambda]^(2))^(1/4)]
Skipped - no semantic math Skipped - no semantic math - -
11.11#Ex6 b 1 ( λ ) = 2 + 3 λ 2 12 ( 1 - λ 2 ) 7 / 4 subscript 𝑏 1 𝜆 2 3 superscript 𝜆 2 12 superscript 1 superscript 𝜆 2 7 4 {\displaystyle{\displaystyle b_{1}(\lambda)=\frac{2+3\lambda^{2}}{12(1-\lambda% ^{2})^{7/4}}}}
b_{1}(\lambda) = \frac{2+3\lambda^{2}}{12(1-\lambda^{2})^{7/4}}

b[1](lambda) = (2 + 3*(lambda)^(2))/(12*(1 - (lambda)^(2))^(7/4))
Subscript[b, 1][\[Lambda]] == Divide[2 + 3*\[Lambda]^(2),12*(1 - \[Lambda]^(2))^(7/4)]
Skipped - no semantic math Skipped - no semantic math - -
11.11#Ex7 b 2 ( λ ) = 4 + 300 λ 2 + 81 λ 4 864 ( 1 - λ 2 ) 13 / 4 subscript 𝑏 2 𝜆 4 300 superscript 𝜆 2 81 superscript 𝜆 4 864 superscript 1 superscript 𝜆 2 13 4 {\displaystyle{\displaystyle b_{2}(\lambda)=\frac{4+300\lambda^{2}+81\lambda^{% 4}}{864(1-\lambda^{2})^{13/4}}}}
b_{2}(\lambda) = \frac{4+300\lambda^{2}+81\lambda^{4}}{864(1-\lambda^{2})^{13/4}}

b[2](lambda) = (4 + 300*(lambda)^(2)+ 81*(lambda)^(4))/(864*(1 - (lambda)^(2))^(13/4))
Subscript[b, 2][\[Lambda]] == Divide[4 + 300*\[Lambda]^(2)+ 81*\[Lambda]^(4),864*(1 - \[Lambda]^(2))^(13/4)]
Skipped - no semantic math Skipped - no semantic math - -