Bessel Functions - 11.2 Definitions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
11.2.E1 | \StruveH{\nu}@{z} = (\tfrac{1}{2}z)^{\nu+1}\sum_{n=0}^{\infty}\frac{(-1)^{n}(\tfrac{1}{2}z)^{2n}}{\EulerGamma@{n+\tfrac{3}{2}}\EulerGamma@{n+\nu+\tfrac{3}{2}}} |
StruveH(nu, z) = ((1)/(2)*z)^(nu + 1)* sum(((- 1)^(n)*((1)/(2)*z)^(2*n))/(GAMMA(n +(3)/(2))*GAMMA(n + nu +(3)/(2))), n = 0..infinity)
|
StruveH[\[Nu], z] == (Divide[1,2]*z)^(\[Nu]+ 1)* Sum[Divide[(- 1)^(n)*(Divide[1,2]*z)^(2*n),Gamma[n +Divide[3,2]]*Gamma[n + \[Nu]+Divide[3,2]]], {n, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 70] | |
11.2.E2 | \modStruveL{\nu}@{z} = -ie^{-\frac{1}{2}\pi i\nu}\StruveH{\nu}@{iz} |
StruveL(nu, z) = - I*exp(-(1)/(2)*Pi*I*nu)*StruveH(nu, I*z)
|
StruveL[\[Nu], z] == - I*Exp[-Divide[1,2]*Pi*I*\[Nu]]*StruveH[\[Nu], I*z]
|
Failure | Failure | Failed [8 / 70] Result: 1.240284959+1.629557917*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Result: 33.65868914+29.08337177*I
Test Values: {nu = -1/2+1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [8 / 70]
Result: Complex[1.2402849561066787, 1.6295579188731661]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[33.658689094091635, 29.08337174056143]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E2 | -ie^{-\frac{1}{2}\pi i\nu}\StruveH{\nu}@{iz} = (\tfrac{1}{2}z)^{\nu+1}\sum_{n=0}^{\infty}\frac{(\tfrac{1}{2}z)^{2n}}{\EulerGamma@{n+\tfrac{3}{2}}\EulerGamma@{n+\nu+\tfrac{3}{2}}} |
- I*exp(-(1)/(2)*Pi*I*nu)*StruveH(nu, I*z) = ((1)/(2)*z)^(nu + 1)* sum((((1)/(2)*z)^(2*n))/(GAMMA(n +(3)/(2))*GAMMA(n + nu +(3)/(2))), n = 0..infinity)
|
- I*Exp[-Divide[1,2]*Pi*I*\[Nu]]*StruveH[\[Nu], I*z] == (Divide[1,2]*z)^(\[Nu]+ 1)* Sum[Divide[(Divide[1,2]*z)^(2*n),Gamma[n +Divide[3,2]]*Gamma[n + \[Nu]+Divide[3,2]]], {n, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [8 / 70] Result: -1.240284959-1.629557917*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Result: -33.65868914-29.08337177*I
Test Values: {nu = -1/2+1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [8 / 70]
Result: Complex[-1.2402849561066787, -1.6295579188731661]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-33.658689094091635, -29.08337174056143]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E5 | \StruveK{\nu}@{z} = \StruveH{\nu}@{z}-\BesselY{\nu}@{z} |
StruveH(nu, z) - BesselY(nu, z) = StruveH(nu, z)- BesselY(nu, z)
|
StruveH[\[Nu], z] - BesselY[\[Nu], z] == StruveH[\[Nu], z]- BesselY[\[Nu], z]
|
Successful | Successful | - | Successful [Tested: 70] | |
11.2.E6 | \modStruveM{\nu}@{z} = \modStruveL{\nu}@{z}-\modBesselI{\nu}@{z} |
StruveL(nu, z) - BesselI(nu, z) = StruveL(nu, z)- BesselI(nu, z)
|
StruveL[\[Nu], z] - BesselI[\[Nu], z] == StruveL[\[Nu], z]- BesselI[\[Nu], z]
|
Successful | Successful | - | Successful [Tested: 70] | |
11.2.E7 | \deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w = \frac{(\tfrac{1}{2}z)^{\nu-1}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}} |
diff(w, [z$(2)])+(1)/(z)*diff(w, z)+(1 -((nu)^(2))/((z)^(2)))*w = (((1)/(2)*z)^(nu - 1))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))
|
D[w, {z, 2}]+Divide[1,z]*D[w, z]+(1 -Divide[\[Nu]^(2),(z)^(2)])*w == Divide[(Divide[1,2]*z)^(\[Nu]- 1),Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]
|
Failure | Failure | Failed [300 / 300] Result: -.5630887369+.2307852889*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: 1.502962248+1.156533180*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.563088736999922, 0.23078528896155245]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.3603758852198513, 0.9342077190875079]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E8 | w = \StruveH{\nu}@{z},\StruveK{\nu}@{z} |
w = StruveH(nu, z); StruveH(nu, z) - BesselY(nu, z)
|
w == StruveH[\[Nu], z]
StruveH[\[Nu], z] - BesselY[\[Nu], z]
|
Failure | Failure | Error | Error | |
11.2.E9 | \deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}-\left(1+\frac{\nu^{2}}{z^{2}}\right)w = \frac{(\tfrac{1}{2}z)^{\nu-1}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}} |
diff(w, [z$(2)])+(1)/(z)*diff(w, z)-(1 +((nu)^(2))/((z)^(2)))*w = (((1)/(2)*z)^(nu - 1))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))
|
D[w, {z, 2}]+Divide[1,z]*D[w, z]-(1 +Divide[\[Nu]^(2),(z)^(2)])*w == Divide[(Divide[1,2]*z)^(\[Nu]- 1),Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]
|
Failure | Failure | Failed [300 / 300] Result: -2.295139545-.7692147111*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -.2290885595+.1565331804*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-2.2951395445687996, -0.7692147110384474]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.0924266927887287, -0.06579228091249201]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E10 | w = \modStruveL{\nu}@{z},\modStruveM{\nu}@{z} |
w = StruveL(nu, z); StruveL(nu, z) - BesselI(nu, z)
|
w == StruveL[\[Nu], z]
StruveL[\[Nu], z] - BesselI[\[Nu], z]
|
Failure | Failure | Error | Error | |
11.2.E11 | w = \StruveH{\nu}@{x}+A\BesselJ{\nu}@{x}+B\BesselY{\nu}@{x} |
w = StruveH(nu, x)+ A*BesselJ(nu, x)+ B*BesselY(nu, x)
|
w == StruveH[\[Nu], x]+ A*BesselJ[\[Nu], x]+ B*BesselY[\[Nu], x]
|
Failure | Failure | Failed [300 / 300] Result: -.568729179e-1+1.004857129*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: 1.306236381+1.613216681*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.056872918319905263, 1.0048571288175818]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.7531990546092198, -1.6096988531229037]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E12 | w = \StruveK{\nu}@{x}+A\BesselJ{\nu}@{x}+B\BesselY{\nu}@{x} |
w = StruveH(nu, x) - BesselY(nu, x)+ A*BesselJ(nu, x)+ B*BesselY(nu, x)
|
w == StruveH[\[Nu], x] - BesselY[\[Nu], x]+ A*BesselJ[\[Nu], x]+ B*BesselY[\[Nu], x]
|
Failure | Failure | Failed [300 / 300] Result: -.4449553305+.6668360043*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: .1477245032+1.196204678*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.4449553308212987, 0.6668360040225405]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.2518593906559602, -2.1242453536287655]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E13 | w = \StruveH{\nu}@{z}+A\BesselJ{\nu}@{z}+B\HankelH{1}{\nu}@{z} |
w = StruveH(nu, z)+ A*BesselJ(nu, z)+ B*HankelH1(nu, z)
|
w == StruveH[\[Nu], z]+ A*BesselJ[\[Nu], z]+ B*HankelH1[\[Nu], z]
|
Failure | Failure | Failed [300 / 300] Result: -.4180841979+.8728935730*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: 1.928541044+.4861253769*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.4180841980733331, 0.8728935728522607]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.285405641595042, -1.3320778184897675]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E14 | w = \StruveH{\nu}@{z}+A\BesselJ{\nu}@{z}+B\HankelH{2}{\nu}@{z} |
w = StruveH(nu, z)+ A*BesselJ(nu, z)+ B*HankelH2(nu, z)
|
w == StruveH[\[Nu], z]+ A*BesselJ[\[Nu], z]+ B*HankelH2[\[Nu], z]
|
Failure | Failure | Failed [300 / 300] Result: .1098269700-.5965662020*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .3171413600-.3710144720*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.109826969919957, -0.5965662019254474]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.9889109079558663, -0.015623729667162342]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E15 | w = \StruveK{\nu}@{z}+A\HankelH{1}{\nu}@{z}+B\HankelH{2}{\nu}@{z} |
w = StruveH(nu, z) - BesselY(nu, z)+ A*HankelH1(nu, z)+ B*HankelH2(nu, z)
|
w == StruveH[\[Nu], z] - BesselY[\[Nu], z]+ A*HankelH1[\[Nu], z]+ B*HankelH2[\[Nu], z]
|
Failure | Failure | Failed [300 / 300] Result: -.9224011534+.2769363875*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: 1.154538681+.9695969456*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.9224011534734378, 0.27693638794598185]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.3912406162671118, -1.5643629838862487]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E16 | w = \modStruveL{\nu}@{z}+A\modBesselK{\nu}@{z}+B\modBesselI{\nu}@{z} |
w = StruveL(nu, z)+ A*BesselK(nu, z)+ B*BesselI(nu, z)
|
w == StruveL[\[Nu], z]+ A*BesselK[\[Nu], z]+ B*BesselI[\[Nu], z]
|
Failure | Failure | Failed [300 / 300] Result: -.4427134717+.1412701443*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .8499113341+3.412421345*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.4427134718200613, 0.1412701442672558]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.8647663358395983, -0.37009195882490975]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.2.E17 | w = \modStruveM{\nu}@{z}+A\modBesselK{\nu}@{z}+B\modBesselI{\nu}@{z} |
w = StruveL(nu, z) - BesselI(nu, z)+ A*BesselK(nu, z)+ B*BesselI(nu, z)
|
w == StruveL[\[Nu], z] - BesselI[\[Nu], z]+ A*BesselK[\[Nu], z]+ B*BesselI[\[Nu], z]
|
Failure | Failure | Failed [300 / 300] Result: .876284277e-1+.1517241441*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .9234962821+3.599925727*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.08762842754807953, 0.15172414402816306]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.09828151494898707, -0.22324970290386212]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |