Bessel Functions - 10.66 Expansions in Series of Bessel Functions

From testwiki
Revision as of 11:28, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.66.E1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! Kelvin-ber 𝜈 𝑥 𝑖 Kelvin-bei 𝜈 𝑥 superscript subscript 𝑘 0 superscript 𝑒 3 𝜈 𝑘 𝜋 𝑖 4 superscript 𝑥 𝑘 Bessel-J 𝜈 𝑘 𝑥 superscript 2 𝑘 2 𝑘 {\displaystyle{\displaystyle\operatorname{ber}_{\nu}x+i\operatorname{bei}_{\nu% }x=\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}J_{\nu+k}\left(x\right)}{2% ^{k/2}k!}}}
\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}
( ( ν + k ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\nu+k)+k+1)>0,\Re(\nu+k+1)>0}}
KelvinBer(nu, x)+ I*KelvinBei(nu, x) = sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Complex[-0.12257968900025018, 0.2735107661041647], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.3467793075651209, -0.08562995402477025], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.66.E1 k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! superscript subscript 𝑘 0 superscript 𝑒 3 𝜈 𝑘 𝜋 𝑖 4 superscript 𝑥 𝑘 Bessel-J 𝜈 𝑘 𝑥 superscript 2 𝑘 2 𝑘 superscript subscript 𝑘 0 superscript 𝑒 3 𝜈 3 𝑘 𝜋 𝑖 4 superscript 𝑥 𝑘 modified-Bessel-first-kind 𝜈 𝑘 𝑥 superscript 2 𝑘 2 𝑘 {\displaystyle{\displaystyle\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}J% _{\nu+k}\left(x\right)}{2^{k/2}k!}=\sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/% 4}x^{k}I_{\nu+k}\left(x\right)}{2^{k/2}k!}}}
\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}
( ( ν + k ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\nu+k)+k+1)>0,\Re(\nu+k+1)>0}}
sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity) = sum((exp((3*nu + 3*k)*Pi*I/4)*(x)^(k)* BesselI(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)
Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] == Sum[Divide[Exp[(3*\[Nu]+ 3*k)*Pi*I/4]*(x)^(k)* BesselI[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.66#Ex1 ber n ( x 2 ) = k = - ( - 1 ) n + k J n + 2 k ( x ) I 2 k ( x ) Kelvin-ber 𝑛 𝑥 2 superscript subscript 𝑘 superscript 1 𝑛 𝑘 Bessel-J 𝑛 2 𝑘 𝑥 modified-Bessel-first-kind 2 𝑘 𝑥 {\displaystyle{\displaystyle\operatorname{ber}_{n}\left(x\sqrt{2}\right)=\sum_% {k=-\infty}^{\infty}(-1)^{n+k}J_{n+2k}\left(x\right)I_{2k}\left(x\right)}}
\Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}
( ( n + 2 k ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 𝑛 2 𝑘 𝑘 1 0 formulae-sequence 𝑛 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+2k)+k+1)>0,\Re(n+k+1)>0,\Re((2k)+k+1)>0}}
KelvinBer(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k, x)*BesselI(2*k, x), k = - infinity..infinity)
KelvinBer[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k, x]*BesselI[2*k, x], {k, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
10.66#Ex2 bei n ( x 2 ) = k = - ( - 1 ) n + k J n + 2 k + 1 ( x ) I 2 k + 1 ( x ) Kelvin-bei 𝑛 𝑥 2 superscript subscript 𝑘 superscript 1 𝑛 𝑘 Bessel-J 𝑛 2 𝑘 1 𝑥 modified-Bessel-first-kind 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\operatorname{bei}_{n}\left(x\sqrt{2}\right)=\sum_% {k=-\infty}^{\infty}(-1)^{n+k}J_{n+2k+1}\left(x\right)I_{2k+1}\left(x\right)}}
\Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}
( ( n + 2 k + 1 ) + k + 1 ) > 0 , ( ( 2 k + 1 ) + k + 1 ) > 0 formulae-sequence 𝑛 2 𝑘 1 𝑘 1 0 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+2k+1)+k+1)>0,\Re((2k+1)+k+1)>0}}
KelvinBei(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k + 1, x)*BesselI(2*k + 1, x), k = - infinity..infinity)
KelvinBei[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k + 1, x]*BesselI[2*k + 1, x], {k, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out