Bessel Functions - 10.57 Uniform Asymptotic Expansions for Large Order

From testwiki
Revision as of 11:27, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.57.E1 𝗃 n β€² ⁑ ( ( n + 1 2 ) ⁒ z ) = Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 1 2 ⁒ J n + 1 2 β€² ⁑ ( ( n + 1 2 ) ⁒ z ) - Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 3 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) diffop spherical-Bessel-J 𝑛 1 𝑛 1 2 𝑧 superscript πœ‹ 1 2 superscript 2 𝑛 1 𝑧 1 2 diffop Bessel-J 𝑛 1 2 1 𝑛 1 2 𝑧 superscript πœ‹ 1 2 superscript 2 𝑛 1 𝑧 3 2 Bessel-J 𝑛 1 2 𝑛 1 2 𝑧 {\displaystyle{\displaystyle\mathsf{j}_{n}'\left((n+\tfrac{1}{2})z\right)=% \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}J_{n+\frac{1}{2}}'\left((n+% \tfrac{1}{2})z\right)-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}J_{n+% \frac{1}{2}}\left((n+\tfrac{1}{2})z\right)}}
\sphBesselJ{n}'@{(n+\tfrac{1}{2})z} = \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}\BesselJ{n+\frac{1}{2}}'@{(n+\tfrac{1}{2})z}-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}\BesselJ{n+\frac{1}{2}}@{(n+\tfrac{1}{2})z}
β„œ ⁑ ( ( n + 1 2 ) + k + 1 ) > 0 , β„œ ⁑ ( ( - n - 1 2 ) + k + 1 ) > 0 , β„œ ⁑ ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 π‘˜ 1 0 formulae-sequence 𝑛 1 2 π‘˜ 1 0 𝑛 1 2 π‘˜ 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0}}
Error
D[SphericalBesselJ[n, (n +Divide[1,2])*z], {(n +Divide[1,2])*z, 1}] == Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[1,2])]*D[BesselJ[n +Divide[1,2], (n +Divide[1,2])*z], {(n +Divide[1,2])*z, 1}]-Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[3,2])]*BesselJ[n +Divide[1,2], (n +Divide[1,2])*z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.14653389603833195, -0.029869009956249915], Times[Complex[-0.988457695936884, 0.2648564413786163], D[Complex[0.36567703182522004, 0.24184221354059504]
Test Values: {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], D[Complex[0.425509744388485, 0.14219887983348967], {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.06710374092328811, 0.007963502819859997], Times[Complex[-0.7656560389588212, 0.20515691731902835], D[Complex[0.2637838125883578, 0.3348231997381719]
Test Values: {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], D[Complex[0.27065896459303473, 0.20224233103375913], {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data