Bessel Functions - 10.45 Functions of Imaginary Order

From testwiki
Revision as of 11:26, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.45.E1 x 2 d 2 w d x 2 + x d w d x + ( ν 2 - x 2 ) w = 0 superscript 𝑥 2 derivative 𝑤 𝑥 2 𝑥 derivative 𝑤 𝑥 superscript 𝜈 2 superscript 𝑥 2 𝑤 0 {\displaystyle{\displaystyle x^{2}\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}x}^{2}}+% x\frac{\mathrm{d}w}{\mathrm{d}x}+(\nu^{2}-x^{2})w=0}}
x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(\nu^{2}-x^{2})w = 0

(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((nu)^(2)- (x)^(2))*w = 0
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+(\[Nu]^(2)- (x)^(2))*w == 0
Failure Failure
Failed [240 / 300]
Result: -1.948557159-.1249999996*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.2165063507+.8750000006*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [240 / 300]
Result: Complex[-1.948557158514987, -0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.9485571585149875, -2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.45.E2 I ~ ν ( x ) = ( I i ν ( x ) ) modified-Bessel-first-kind-imaginary-order 𝜈 𝑥 modified-Bessel-first-kind 𝑖 𝜈 𝑥 {\displaystyle{\displaystyle\displaystyle\widetilde{I}_{\nu}\left(x\right)=\Re% \left(I_{i\nu}\left(x\right)\right)}}
\displaystyle\modBesselIimag{\nu}@{x} = \realpart@{\modBesselI{i\nu}@{x}}
( ( i ν ) + k + 1 ) > 0 imaginary-unit 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((\mathrm{i}\nu)+k+1)>0}}
Re(BesselI(I*(nu), x)) = Re(BesselI(I*nu, x))
Re[BesselI[I*\[Nu], x]] == Re[BesselI[I*\[Nu], x]]
Successful Successful - Successful [Tested: 30]
10.45.E2 K ~ ν ( x ) = K i ν ( x ) modified-Bessel-second-kind-imaginary-order 𝜈 𝑥 modified-Bessel-second-kind 𝑖 𝜈 𝑥 {\displaystyle{\displaystyle\displaystyle\widetilde{K}_{\nu}\left(x\right)=K_{% i\nu}\left(x\right)}}
\displaystyle\modBesselKimag{\nu}@{x} = \modBesselK{i\nu}@{x}

BesselK(I*(nu), x) = BesselK(I*nu, x)
BesselK[I*\[Nu], x] == BesselK[I*\[Nu], x]
Successful Successful - Successful [Tested: 30]
10.45.E3 I ~ - ν ( x ) = I ~ ν ( x ) modified-Bessel-first-kind-imaginary-order 𝜈 𝑥 modified-Bessel-first-kind-imaginary-order 𝜈 𝑥 {\displaystyle{\displaystyle\displaystyle\widetilde{I}_{-\nu}\left(x\right)=% \widetilde{I}_{\nu}\left(x\right)}}
\displaystyle\modBesselIimag{-\nu}@{x} = \modBesselIimag{\nu}@{x}

Re(BesselI(I*(- nu), x)) = Re(BesselI(I*(nu), x))
Re[BesselI[I*- \[Nu], x]] == Re[BesselI[I*\[Nu], x]]
Skipped - no semantic math Skipped - no semantic math - -
10.45.E3 K ~ - ν ( x ) = K ~ ν ( x ) modified-Bessel-second-kind-imaginary-order 𝜈 𝑥 modified-Bessel-second-kind-imaginary-order 𝜈 𝑥 {\displaystyle{\displaystyle\displaystyle\widetilde{K}_{-\nu}\left(x\right)=% \widetilde{K}_{\nu}\left(x\right)}}
\displaystyle\modBesselKimag{-\nu}@{x} = \modBesselKimag{\nu}@{x}

BesselK(I*(- nu), x) = BesselK(I*(nu), x)
BesselK[I*- \[Nu], x] == BesselK[I*\[Nu], x]
Skipped - no semantic math Skipped - no semantic math - -
10.45.E4 𝒲 { K ~ ν ( x ) , I ~ ν ( x ) } = 1 / x Wronskian modified-Bessel-second-kind-imaginary-order 𝜈 𝑥 modified-Bessel-first-kind-imaginary-order 𝜈 𝑥 1 𝑥 {\displaystyle{\displaystyle\mathscr{W}\left\{\widetilde{K}_{\nu}\left(x\right% ),\widetilde{I}_{\nu}\left(x\right)\right\}=1/x}}
\Wronskian@{\modBesselKimag{\nu}@{x},\modBesselIimag{\nu}@{x}} = 1/x

(BesselK(I*(nu), x))*diff(Re(BesselI(I*(nu), x)), x)-diff(BesselK(I*(nu), x), x)*(Re(BesselI(I*(nu), x))) = 1/x
Wronskian[{BesselK[I*\[Nu], x], Re[BesselI[I*\[Nu], x]]}, x] == 1/x
Failure Failure Error
Failed [30 / 30]
Result: Plus[-0.6666666666666666, Times[0.5, Plus[Complex[1.0700115379721733, -0.3754447148158467], Times[Complex[0.1636629185333998, 0.09141848176750039], Derivative[1][Re][Complex[2.445786867824693, 0.6492150843755028]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.6666666666666666, Times[0.5, Plus[Complex[0.8415452902387464, 0.2726729041814867], Times[Complex[0.3412924192180222, 0.19179892830603273], Derivative[1][Re][Complex[1.3137906770541619, -0.7251169608509622]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.45.E8 K ~ 0 ( x ) = K 0 ( x ) modified-Bessel-second-kind-imaginary-order 0 𝑥 modified-Bessel-second-kind 0 𝑥 {\displaystyle{\displaystyle\widetilde{K}_{0}\left(x\right)=K_{0}\left(x\right% )}}
\modBesselKimag{0}@{x} = \modBesselK{0}@{x}

BesselK(I*(0), x) = BesselK(0, x)
BesselK[I*0, x] == BesselK[0, x]
Successful Successful - Successful [Tested: 3]