DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
10.14#Ex1 |
|\BesselJ{\nu}@{x}| \leq 1 |
|
|
Abs[BesselJ[\[Nu], x]] <= 1
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
10.14#Ex2 |
|\BesselJ{\nu}@{x}| \leq 2^{-\frac{1}{2}} |
|
abs(BesselJ(nu, x)) <= (2)^(-(1)/(2))
|
Abs[BesselJ[\[Nu], x]] <= (2)^(-Divide[1,2])
|
Failure |
Failure |
Successful [Tested: 2] |
Successful [Tested: 2]
|
10.14.E2 |
0 < \BesselJ{\nu}@{\nu} |
|
|
0 < BesselJ[\[Nu], \[Nu]]
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
10.14.E2 |
\BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}} |
|
BesselJ(nu, nu) < ((2)^((1)/(3)))/((3)^((2)/(3))* GAMMA((2)/(3))*(nu)^((1)/(3)))
|
BesselJ[\[Nu], \[Nu]] < Divide[(2)^(Divide[1,3]),(3)^(Divide[2,3])* Gamma[Divide[2,3]]*\[Nu]^(Divide[1,3])]
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
10.14.E3 |
|\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|} |
|
abs(BesselJ(n, z)) <= exp(abs(Im(z)))
|
Abs[BesselJ[n, z]] <= Exp[Abs[Im[z]]]
|
Failure |
Failure |
Successful [Tested: 7] |
Successful [Tested: 7]
|
10.14.E4 |
|\BesselJ{\nu}@{z}| \leq \frac{|\tfrac{1}{2}z|^{\nu}e^{|\imagpart@@{z}|}}{\EulerGamma@{\nu+1}} |
|
abs(BesselJ(nu, z)) <= ((abs((1)/(2)*z))^(nu)* exp(abs(Im(z))))/(GAMMA(nu + 1))
|
Abs[BesselJ[\[Nu], z]] <= Divide[(Abs[Divide[1,2]*z])^\[Nu]* Exp[Abs[Im[z]]],Gamma[\[Nu]+ 1]]
|
Failure |
Failure |
Successful [Tested: 7] |
Successful [Tested: 7]
|
10.14.E5 |
|\BesselJ{\nu}@{\nu x}| \leq \frac{x^{\nu}\exp@{\nu(1-x^{2})^{\frac{1}{2}}}}{\left(1+(1-x^{2})^{\frac{1}{2}}\right)^{\nu}} |
|
abs(BesselJ(nu, nu*x)) <= ((x)^(nu)* exp(nu*(1 - (x)^(2))^((1)/(2))))/((1 +(1 - (x)^(2))^((1)/(2)))^(nu))
|
Abs[BesselJ[\[Nu], \[Nu]*x]] <= Divide[(x)^\[Nu]* Exp[\[Nu]*(1 - (x)^(2))^(Divide[1,2])],(1 +(1 - (x)^(2))^(Divide[1,2]))^\[Nu]]
|
Failure |
Failure |
Successful [Tested: 3] |
Skip - No test values generated
|
10.14.E7 |
1 \leq \frac{\BesselJ{\nu}@{\nu x}}{x^{\nu}\BesselJ{\nu}@{\nu}} |
|
1 <= (BesselJ(nu, nu*x))/((x)^(nu)* BesselJ(nu, nu))
|
1 <= Divide[BesselJ[\[Nu], \[Nu]*x],(x)^\[Nu]* BesselJ[\[Nu], \[Nu]]]
|
Failure |
Failure |
Successful [Tested: 3] |
Skip - No test values generated
|
10.14.E7 |
\frac{\BesselJ{\nu}@{\nu x}}{x^{\nu}\BesselJ{\nu}@{\nu}} \leq e^{\nu(1-x)} |
|
(BesselJ(nu, nu*x))/((x)^(nu)* BesselJ(nu, nu)) <= exp(nu*(1 - x))
|
Divide[BesselJ[\[Nu], \[Nu]*x],(x)^\[Nu]* BesselJ[\[Nu], \[Nu]]] <= Exp[\[Nu]*(1 - x)]
|
Failure |
Failure |
Successful [Tested: 3] |
Skip - No test values generated
|
10.14.E8 |
|\BesselJ{n}@{nz}| \leq \frac{\left|z^{n}\exp@{n(1-z^{2})^{\frac{1}{2}}}\right|}{\left|1+(1-z^{2})^{\frac{1}{2}}\right|^{n}} |
|
abs(BesselJ(n, n*z)) <= (abs((z)^(n)* exp(n*(1 - (z)^(2))^((1)/(2)))))/((abs(1 +(1 - (z)^(2))^((1)/(2))))^(n))
|
Abs[BesselJ[n, n*z]] <= Divide[Abs[(z)^(n)* Exp[n*(1 - (z)^(2))^(Divide[1,2])]],(Abs[1 +(1 - (z)^(2))^(Divide[1,2])])^(n)]
|
Failure |
Failure |
Successful [Tested: 7] |
Successful [Tested: 7]
|
10.14.E9 |
|\BesselJ{n}@{nz}| \leq 1 |
|
abs(BesselJ(n, n*z)) <= 1
|
Abs[BesselJ[n, n*z]] <= 1
|
Failure |
Failure |
Error |
Successful [Tested: 21]
|