Bessel Functions - 10.5 Wronskians and Cross-Products

From testwiki
Revision as of 11:22, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.5.E1 𝒲 ⁑ { J Ξ½ ⁑ ( z ) , J - Ξ½ ⁑ ( z ) } = J Ξ½ + 1 ⁑ ( z ) ⁒ J - Ξ½ ⁑ ( z ) + J Ξ½ ⁑ ( z ) ⁒ J - Ξ½ - 1 ⁑ ( z ) Wronskian Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),J_{-\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{\nu}% \left(z\right)J_{-\nu-1}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 1 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((\nu+1)+k+1)>% 0,\Re((-\nu-1)+k+1)>0}}
(BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z)) = BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z)
Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E1 J Ξ½ + 1 ⁑ ( z ) ⁒ J - Ξ½ ⁑ ( z ) + J Ξ½ ⁑ ( z ) ⁒ J - Ξ½ - 1 ⁑ ( z ) = - 2 ⁒ sin ⁑ ( Ξ½ ⁒ Ο€ ) / ( Ο€ ⁒ z ) Bessel-J 𝜈 1 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 2 𝜈 πœ‹ πœ‹ 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{% \nu}\left(z\right)J_{-\nu-1}\left(z\right)=-2\sin\left(\nu\pi\right)/(\pi z)}}
\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 1 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((\nu+1)+k+1)>% 0,\Re((-\nu-1)+k+1)>0}}
BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) = - 2*sin(nu*Pi)/(Pi*z)
BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E2 𝒲 ⁑ { J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) } = J Ξ½ + 1 ⁑ ( z ) ⁒ Y Ξ½ ⁑ ( z ) - J Ξ½ ⁑ ( z ) ⁒ Y Ξ½ + 1 ⁑ ( z ) Wronskian Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),Y_{\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{\nu}% \left(z\right)Y_{\nu+1}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( ( - ( Ξ½ + 1 ) ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 1 π‘˜ 1 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0,\Re((-\nu)+k+1)>% 0,\Re((-(\nu+1))+k+1)>0}}
(BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z)) = BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E2 J Ξ½ + 1 ⁑ ( z ) ⁒ Y Ξ½ ⁑ ( z ) - J Ξ½ ⁑ ( z ) ⁒ Y Ξ½ + 1 ⁑ ( z ) = 2 / ( Ο€ ⁒ z ) Bessel-J 𝜈 1 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 1 𝑧 2 πœ‹ 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{% \nu}\left(z\right)Y_{\nu+1}\left(z\right)=2/(\pi z)}}
\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( ( - ( Ξ½ + 1 ) ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 1 π‘˜ 1 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0,\Re((-\nu)+k+1)>% 0,\Re((-(\nu+1))+k+1)>0}}
BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) = 2/(Pi*z)
BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] == 2/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E3 𝒲 ⁑ { J Ξ½ ⁑ ( z ) , H Ξ½ ( 1 ) ⁑ ( z ) } = J Ξ½ + 1 ⁑ ( z ) ⁒ H Ξ½ ( 1 ) ⁑ ( z ) - J Ξ½ ⁑ ( z ) ⁒ H Ξ½ + 1 ( 1 ) ⁑ ( z ) Wronskian Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),{H^{(1)}_{% \nu}}\left(z\right)\right\}=J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselJ(nu, z))*diff(HankelH1(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH1(nu, z)) = BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], HankelH1[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E3 J Ξ½ + 1 ⁑ ( z ) ⁒ H Ξ½ ( 1 ) ⁑ ( z ) - J Ξ½ ⁑ ( z ) ⁒ H Ξ½ + 1 ( 1 ) ⁑ ( z ) = 2 ⁒ i / ( Ο€ ⁒ z ) Bessel-J 𝜈 1 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 2 𝑖 πœ‹ 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)=2i/(\pi z)}}
\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) = 2*I/(Pi*z)
BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] == 2*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E4 𝒲 ⁑ { J Ξ½ ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) } = J Ξ½ + 1 ⁑ ( z ) ⁒ H Ξ½ ( 2 ) ⁑ ( z ) - J Ξ½ ⁑ ( z ) ⁒ H Ξ½ + 1 ( 2 ) ⁑ ( z ) Wronskian Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),{H^{(2)}_{% \nu}}\left(z\right)\right\}=J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselJ(nu, z))*diff(HankelH2(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH2(nu, z)) = BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], HankelH2[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E4 J Ξ½ + 1 ⁑ ( z ) ⁒ H Ξ½ ( 2 ) ⁑ ( z ) - J Ξ½ ⁑ ( z ) ⁒ H Ξ½ + 1 ( 2 ) ⁑ ( z ) = - 2 ⁒ i / ( Ο€ ⁒ z ) Bessel-J 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 2 𝑖 πœ‹ 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-2i/(\pi z)}}
\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) = - 2*I/(Pi*z)
BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 2*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E5 𝒲 ⁑ { H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) } = H Ξ½ + 1 ( 1 ) ⁑ ( z ) ⁒ H Ξ½ ( 2 ) ⁑ ( z ) - H Ξ½ ( 1 ) ⁑ ( z ) ⁒ H Ξ½ + 1 ( 2 ) ⁑ ( z ) Wronskian Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{{H^{(1)}_{\nu}}\left(z\right),{H% ^{(2)}_{\nu}}\left(z\right)\right\}={H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{% \nu}}\left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z% \right)}}
\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}

(HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z)) = HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z)
Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z] == HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E5 H Ξ½ + 1 ( 1 ) ⁑ ( z ) ⁒ H Ξ½ ( 2 ) ⁑ ( z ) - H Ξ½ ( 1 ) ⁑ ( z ) ⁒ H Ξ½ + 1 ( 2 ) ⁑ ( z ) = - 4 ⁒ i / ( Ο€ ⁒ z ) Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 4 𝑖 πœ‹ 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{\nu}}% \left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-4% i/(\pi z)}}
\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)

HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) = - 4*I/(Pi*z)
HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 4*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]