Airy and Related Functions - 9.13 Generalized Airy Functions

From testwiki
Revision as of 11:21, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
9.13#Ex7 m = n + 2 π‘š 𝑛 2 {\displaystyle{\displaystyle m=n+2}}
m = n+2

m = n + 2
m == n + 2
Skipped - no semantic math Skipped - no semantic math - -
9.13#Ex8 t = ( 1 2 ⁒ m ) - 2 / m ⁒ z 𝑑 superscript 1 2 π‘š 2 π‘š 𝑧 {\displaystyle{\displaystyle t=(\tfrac{1}{2}m)^{-2/m}z}}
t = (\tfrac{1}{2}m)^{-2/m}z

t = ((1)/(2)*m)^(- 2/m)* z
t == (Divide[1,2]*m)^(- 2/m)* z
Skipped - no semantic math Skipped - no semantic math - -
9.13.E20 U 1 ⁒ ( x , Ξ± ) = 1 ( Ξ± + 2 ) 1 / ( Ξ± + 2 ) ⁒ Ξ“ ⁑ ( Ξ± + 1 Ξ± + 2 ) ⁒ x 1 / 2 ⁒ J - 1 / ( Ξ± + 2 ) ⁑ ( 2 Ξ± + 2 ⁒ x ( Ξ± + 2 ) / 2 ) subscript π‘ˆ 1 π‘₯ 𝛼 1 superscript 𝛼 2 1 𝛼 2 Euler-Gamma 𝛼 1 𝛼 2 superscript π‘₯ 1 2 Bessel-J 1 𝛼 2 2 𝛼 2 superscript π‘₯ 𝛼 2 2 {\displaystyle{\displaystyle U_{1}(x,\alpha)=\frac{1}{(\alpha+2)^{1/(\alpha+2)% }}\*\Gamma\left(\frac{\alpha+1}{\alpha+2}\right)x^{1/2}J_{-1/(\alpha+2)}\left(% \frac{2}{\alpha+2}x^{(\alpha+2)/2}\right)}}
U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}

U[1](x , alpha) = (1)/((alpha + 2)^(1/(alpha + 2)))* GAMMA((alpha + 1)/(alpha + 2))*(x)^(1/2)* BesselJ(- 1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/2))
Subscript[U, 1][x , \[Alpha]] == Divide[1,(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))]* Gamma[Divide[\[Alpha]+ 1,\[Alpha]+ 2]]*(x)^(1/2)* BesselJ[- 1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/2)]
Failure Failure Error Error
9.13.E21 U 2 ⁒ ( x , Ξ± ) = ( Ξ± + 2 ) 1 / ( Ξ± + 2 ) ⁒ Ξ“ ⁑ ( Ξ± + 3 Ξ± + 2 ) ⁒ x 1 / 2 ⁒ J 1 / ( Ξ± + 2 ) ⁑ ( 2 Ξ± + 2 ⁒ x ( Ξ± + 2 ) / 2 ) subscript π‘ˆ 2 π‘₯ 𝛼 superscript 𝛼 2 1 𝛼 2 Euler-Gamma 𝛼 3 𝛼 2 superscript π‘₯ 1 2 Bessel-J 1 𝛼 2 2 𝛼 2 superscript π‘₯ 𝛼 2 2 {\displaystyle{\displaystyle U_{2}(x,\alpha)=(\alpha+2)^{1/(\alpha+2)}\*\Gamma% \left(\frac{\alpha+3}{\alpha+2}\right)x^{1/2}J_{1/(\alpha+2)}\left(\frac{2}{% \alpha+2}x^{(\alpha+2)/2}\right)}}
U_{2}(x,\alpha) = (\alpha+2)^{1/(\alpha+2)}\*\EulerGamma@{\frac{\alpha+3}{\alpha+2}}x^{1/2}\BesselJ{1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}

U[2](x , alpha) = (alpha + 2)^(1/(alpha + 2))* GAMMA((alpha + 3)/(alpha + 2))*(x)^(1/2)* BesselJ(1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/2))
Subscript[U, 2][x , \[Alpha]] == (\[Alpha]+ 2)^(1/(\[Alpha]+ 2))* Gamma[Divide[\[Alpha]+ 3,\[Alpha]+ 2]]*(x)^(1/2)* BesselJ[1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/2)]
Failure Failure Error Error
9.13#Ex9 Ξ± = m - 2 𝛼 π‘š 2 {\displaystyle{\displaystyle\alpha=m-2}}
\alpha = m-2

alpha = m - 2
\[Alpha] == m - 2
Skipped - no semantic math Skipped - no semantic math - -
9.13#Ex10 x = ( m / 2 ) 2 / m ⁒ t π‘₯ superscript π‘š 2 2 π‘š 𝑑 {\displaystyle{\displaystyle x=(m/2)^{2/m}t}}
x = (m/2)^{2/m}t

x = (m/2)^(2/m)* t
x == (m/2)^(2/m)* t
Skipped - no semantic math Skipped - no semantic math - -
9.13.E23 U 1 ⁒ ( x , Ξ± ) = Ο€ 1 / 2 2 ( m + 2 ) / ( 2 ⁒ m ) ⁒ Ξ“ ⁑ ( 1 / m ) ⁒ ( W m ⁒ ( t ) + W m ⁒ ( - t ) ) subscript π‘ˆ 1 π‘₯ 𝛼 superscript πœ‹ 1 2 superscript 2 π‘š 2 2 π‘š Euler-Gamma 1 π‘š subscript π‘Š π‘š 𝑑 subscript π‘Š π‘š 𝑑 {\displaystyle{\displaystyle U_{1}(x,\alpha)=\frac{\pi^{1/2}}{2^{(m+2)/(2m)}% \Gamma\left(1/m\right)}\left(W_{m}(t)+W_{m}(-t)\right)}}
U_{1}(x,\alpha) = \frac{\pi^{1/2}}{2^{(m+2)/(2m)}\EulerGamma@{1/m}}\left(W_{m}(t)+W_{m}(-t)\right)
β„œ ⁑ ( 1 / m ) > 0 1 π‘š 0 {\displaystyle{\displaystyle\Re(1/m)>0}}
U[1](x , alpha) = ((Pi)^(1/2))/((2)^((m + 2)/(2*m))* GAMMA(1/m))*(W[m](t)+ W[m](- t))
Subscript[U, 1][x , \[Alpha]] == Divide[(Pi)^(1/2),(2)^((m + 2)/(2*m))* Gamma[1/m]]*(Subscript[W, m][t]+ Subscript[W, m][- t])
Failure Failure Error Error
9.13.E24 U 2 ⁒ ( x , Ξ± ) = Ο€ 1 / 2 ⁒ m 2 / m 2 ( m + 2 ) / ( 2 ⁒ m ) ⁒ Ξ“ ⁑ ( - 1 / m ) ⁒ ( W m ⁒ ( t ) - W m ⁒ ( - t ) ) subscript π‘ˆ 2 π‘₯ 𝛼 superscript πœ‹ 1 2 superscript π‘š 2 π‘š superscript 2 π‘š 2 2 π‘š Euler-Gamma 1 π‘š subscript π‘Š π‘š 𝑑 subscript π‘Š π‘š 𝑑 {\displaystyle{\displaystyle U_{2}(x,\alpha)=\frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/% (2m)}\Gamma\left(-1/m\right)}\left(W_{m}(t){-}W_{m}(-t)\right)}}
U_{2}(x,\alpha) = \frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/(2m)}\EulerGamma@{-1/m}}\left(W_{m}(t){-}W_{m}(-t)\right)
β„œ ⁑ ( - 1 / m ) > 0 1 π‘š 0 {\displaystyle{\displaystyle\Re(-1/m)>0}}
U[2](x , alpha) = ((Pi)^(1/2)* (m)^(2/m))/((2)^((m + 2)/(2*m))* GAMMA(- 1/m))*(W[m](t)- W[m](- t))
Subscript[U, 2][x , \[Alpha]] == Divide[(Pi)^(1/2)* (m)^(2/m),(2)^((m + 2)/(2*m))* Gamma[- 1/m]]*(Subscript[W, m][t]- Subscript[W, m][- t])
Failure Failure Error Error