Incomplete Gamma and Related Functions - 8.22 Mathematical Applications

From testwiki
Revision as of 11:19, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.22.E1 Γ ( p ) 2 π z 1 - p E p ( z ) = Γ ( p ) 2 π Γ ( 1 - p , z ) Euler-Gamma 𝑝 2 𝜋 superscript 𝑧 1 𝑝 exponential-integral-En 𝑝 𝑧 Euler-Gamma 𝑝 2 𝜋 incomplete-Gamma 1 𝑝 𝑧 {\displaystyle{\displaystyle\frac{\Gamma\left(p\right)}{2\pi}z^{1-p}E_{p}\left% (z\right)=\frac{\Gamma\left(p\right)}{2\pi}\Gamma\left(1-p,z\right)}}
\frac{\EulerGamma@{p}}{2\pi}z^{1-p}\genexpintE{p}@{z} = \frac{\EulerGamma@{p}}{2\pi}\incGamma@{1-p}{z}
p > 0 , ( n + p ) > 0 formulae-sequence 𝑝 0 𝑛 𝑝 0 {\displaystyle{\displaystyle\Re p>0,\Re(n+p)>0}}
(GAMMA(p))/(2*Pi)*(z)^(1 - p)* Ei(p, z) = (GAMMA(p))/(2*Pi)*GAMMA(1 - p, z)
Divide[Gamma[p],2*Pi]*(z)^(1 - p)* ExpIntegralE[p, z] == Divide[Gamma[p],2*Pi]*Gamma[1 - p, z]
Successful Successful - Successful [Tested: 35]
8.22.E3 ζ x ( s ) = k = 1 k - s P ( s , k x ) subscript 𝜁 𝑥 𝑠 superscript subscript 𝑘 1 superscript 𝑘 𝑠 incomplete-gamma-P 𝑠 𝑘 𝑥 {\displaystyle{\displaystyle\zeta_{x}(s)=\sum_{k=1}^{\infty}k^{-s}P\left(s,kx% \right)}}
\zeta_{x}(s) = \sum_{k=1}^{\infty}k^{-s}\normincGammaP@{s}{kx}
s > 1 𝑠 1 {\displaystyle{\displaystyle\Re s>1}}
((1)/(GAMMA(s))*int(((t)^(s - 1))/(exp(t)- 1), t = 0..x)) = sum((k)^(- s)* (GAMMA(s)-GAMMA(s, k*x))/GAMMA(s), k = 1..infinity)
(Divide[1,Gamma[s]]*Integrate[Divide[(t)^(s - 1),Exp[t]- 1], {t, 0, x}, GenerateConditions->None]) == Sum[(k)^(- s)* GammaRegularized[s, 0, k*x], {k, 1, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out