Incomplete Gamma and Related Functions - 8.15 Sums

From testwiki
Revision as of 11:18, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.15.E1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 - λ ) k k ! incomplete-gamma 𝑎 𝜆 𝑥 superscript 𝜆 𝑎 superscript subscript 𝑘 0 incomplete-gamma 𝑎 𝑘 𝑥 superscript 1 𝜆 𝑘 𝑘 {\displaystyle{\displaystyle\gamma\left(a,\lambda x\right)=\lambda^{a}\sum_{k=% 0}^{\infty}\gamma\left(a+k,x\right)\frac{(1-\lambda)^{k}}{k!}}}
\incgamma@{a}{\lambda x} = \lambda^{a}\sum_{k=0}^{\infty}\incgamma@{a+k}{x}\frac{(1-\lambda)^{k}}{k!}
a > 0 , ( a + k ) > 0 formulae-sequence 𝑎 0 𝑎 𝑘 0 {\displaystyle{\displaystyle\Re a>0,\Re(a+k)>0}}
GAMMA(a)-GAMMA(a, lambda*x) = (lambda)^(a)* sum(GAMMA(a + k)-GAMMA(a + k, x)*((1 - lambda)^(k))/(factorial(k)), k = 0..infinity)
Gamma[a, 0, \[Lambda]*x] == \[Lambda]^(a)* Sum[Gamma[a + k, 0, x]*Divide[(1 - \[Lambda])^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [90 / 90]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = 1.5, lambda = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = 1.5, lambda = 1/2*3^(1/2)+1/2*I, x = .5}

... skip entries to safe data
Skipped - Because timed out