DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
8.14.E1 |
\int_{0}^{\infty}e^{-ax}\frac{\incgamma@{b}{x}}{\EulerGamma@{b}}\diff{x} = \frac{(1+a)^{-b}}{a} |
|
int(exp(- a*x)*(GAMMA(b)-GAMMA(b, x))/(GAMMA(b)), x = 0..infinity) = ((1 + a)^(- b))/(a)
|
Integrate[Exp[- a*x]*Divide[Gamma[b, 0, x],Gamma[b]], {x, 0, Infinity}, GenerateConditions->None] == Divide[(1 + a)^(- b),a]
|
Successful |
Aborted |
- |
Skipped - Because timed out
|
8.14.E2 |
\int_{0}^{\infty}e^{-ax}\incGamma@{b}{x}\diff{x} = \EulerGamma@{b}\frac{1-(1+a)^{-b}}{a} |
|
int(exp(- a*x)*GAMMA(b, x), x = 0..infinity) = GAMMA(b)*(1 -(1 + a)^(- b))/(a)
|
Integrate[Exp[- a*x]*Gamma[b, x], {x, 0, Infinity}, GenerateConditions->None] == Gamma[b]*Divide[1 -(1 + a)^(- b),a]
|
Failure |
Aborted |
Successful [Tested: 12] |
Skipped - Because timed out
|
8.14.E3 |
\int_{0}^{\infty}x^{a-1}\incgamma@{b}{x}\diff{x} = -\frac{\EulerGamma@{a+b}}{a} |
|
int((x)^(a - 1)* GAMMA(b)-GAMMA(b, x), x = 0..infinity) = -(GAMMA(a + b))/(a)
|
Integrate[(x)^(a - 1)* Gamma[b, 0, x], {x, 0, Infinity}, GenerateConditions->None] == -Divide[Gamma[a + b],a]
|
Failure |
Aborted |
Failed [3 / 3] Result: Float(infinity)
Test Values: {a = -1.5, b = 2}
Result: Float(infinity)
Test Values: {a = -.5, b = 1.5}
... skip entries to safe data |
Skip - No test values generated
|
8.14.E4 |
\int_{0}^{\infty}x^{a-1}\incGamma@{b}{x}\diff{x} = \frac{\EulerGamma@{a+b}}{a} |
|
int((x)^(a - 1)* GAMMA(b, x), x = 0..infinity) = (GAMMA(a + b))/(a)
|
Integrate[(x)^(a - 1)* Gamma[b, x], {x, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[a + b],a]
|
Successful |
Successful |
- |
Successful [Tested: 12]
|
8.14.E5 |
\int_{0}^{\infty}x^{a-1}e^{-sx}\incgamma@{b}{x}\diff{x} = \frac{\EulerGamma@{a+b}}{b(1+s)^{a+b}}\*\hyperF@{1}{a+b}{1+b}{1/(1+s)} |
|
int((x)^(a - 1)* exp(- s*x)*GAMMA(b)-GAMMA(b, x), x = 0..infinity) = (GAMMA(a + b))/(b*(1 + s)^(a + b))* hypergeom([1, a + b], [1 + b], 1/(1 + s))
|
Integrate[(x)^(a - 1)* Exp[- s*x]*Gamma[b, 0, x], {x, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[a + b],b*(1 + s)^(a + b)]* Hypergeometric2F1[1, a + b, 1 + b, 1/(1 + s)]
|
Failure |
Aborted |
Failed [36 / 36] Result: Float(infinity)
Test Values: {a = -1.5, b = 2, s = 1.5}
Result: Float(infinity)
Test Values: {a = -1.5, b = 2, s = .5}
... skip entries to safe data |
Skipped - Because timed out
|
8.14.E6 |
\int_{0}^{\infty}x^{a-1}e^{-sx}\incGamma@{b}{x}\diff{x} = \frac{\EulerGamma@{a+b}}{a(1+s)^{a+b}}\*\hyperF@{1}{a+b}{1+a}{s/(1+s)} |
|
int((x)^(a - 1)* exp(- s*x)*GAMMA(b, x), x = 0..infinity) = (GAMMA(a + b))/(a*(1 + s)^(a + b))* hypergeom([1, a + b], [1 + a], s/(1 + s))
|
Integrate[(x)^(a - 1)* Exp[- s*x]*Gamma[b, x], {x, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[a + b],a*(1 + s)^(a + b)]* Hypergeometric2F1[1, a + b, 1 + a, s/(1 + s)]
|
Failure |
Aborted |
Skipped - Because timed out |
Skipped - Because timed out
|