Incomplete Gamma and Related Functions - 8.10 Inequalities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.10.E1 | x^{1-a}e^{x}\incGamma@{a}{x} \leq 1 |
(x)^(1 - a)* exp(x)*GAMMA(a, x) <= 1
|
(x)^(1 - a)* Exp[x]*Gamma[a, x] <= 1
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
8.10.E2 | \incgamma@{a}{x} \geq \frac{x^{a-1}}{a}(1-e^{-x}) |
GAMMA(a)-GAMMA(a, x) >= ((x)^(a - 1))/(a)*(1 - exp(- x))
|
Gamma[a, 0, x] >= Divide[(x)^(a - 1),a]*(1 - Exp[- x])
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
8.10.E3 | x^{1-a}e^{x}\incGamma@{a}{x} = 1+\frac{a-1}{x}\vartheta |
|
(x)^(1 - a)* exp(x)*GAMMA(a, x) = 1 +(a - 1)/(x)*vartheta
|
(x)^(1 - a)* Exp[x]*Gamma[a, x] == 1 +Divide[a - 1,x]*\[CurlyTheta]
|
Failure | Failure | Failed [180 / 180] Result: .8735840245+.8333333335*I
Test Values: {a = -1.5, x = 1.5, vartheta = 1/2*3^(1/2)+1/2*I}
Result: -1.403124983+1.443375674*I
Test Values: {a = -1.5, x = 1.5, vartheta = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [180 / 180]
Result: Complex[0.8735840235649492, 0.8333333333333331]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[ϑ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.4031249827424481, 1.4433756729740643]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[ϑ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
8.10.E4 | 0 < \vartheta |
0 < vartheta |
0 < \[CurlyTheta] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
8.10.E5 | A_{n} < x^{1-a}e^{x}\incGamma@{a}{x} |
A[n](<)*(x)^(1 - a)* exp(x)*GAMMA(a, x)
|
Subscript[A, n][<]*(x)^(1 - a)* Exp[x]*Gamma[a, x]
|
Failure | Failure | Failed [75 / 300] Result: 1.5 < .4302083505
Test Values: {a = -1.5, x = 1.5, A[n] = 1.5, n = 1}
Result: 1.5 < .4302083505
Test Values: {a = -1.5, x = 1.5, A[n] = 1.5, n = 2}
... skip entries to safe data |
Failed [195 / 300]
Result: Less[Complex[0.8660254037844387, 0.49999999999999994], 0.43020835059088497]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[x, 1.5], Rule[Subscript[A, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Less[Complex[0.8660254037844387, 0.49999999999999994], 0.43020835059088497]
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[x, 1.5], Rule[Subscript[A, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
8.10.E5 | x^{1-a}e^{x}\incGamma@{a}{x} < B_{n} |
(x)^(1 - a)* exp(x)*GAMMA(a, x) < B[n]
|
(x)^(1 - a)* Exp[x]*Gamma[a, x] < Subscript[B, n]
|
Failure | Failure | Failed [105 / 300] Result: .4302083505 < -1.5
Test Values: {a = -1.5, x = 1.5, B[n] = -1.5, n = 1}
Result: .4302083505 < -1.5
Test Values: {a = -1.5, x = 1.5, B[n] = -1.5, n = 2}
... skip entries to safe data |
Failed [225 / 300]
Result: Less[0.43020835059088497, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[x, 1.5], Rule[Subscript[B, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Less[0.43020835059088497, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[x, 1.5], Rule[Subscript[B, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
8.10#Ex1 | A_{1} = \frac{x}{x+1-a} |
|
A[1] = (x)/(x + 1 - a) |
Subscript[A, 1] == Divide[x,x + 1 - a] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.10#Ex2 | B_{1} = \frac{x+1}{x+2-a} |
|
B[1] = (x + 1)/(x + 2 - a) |
Subscript[B, 1] == Divide[x + 1,x + 2 - a] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.10#Ex3 | A_{2} = \frac{x(x+3-a)}{x^{2}+2(2-a)x+(1-a)(2-a)} |
|
A[2] = (x*(x + 3 - a))/((x)^(2)+ 2*(2 - a)*x +(1 - a)*(2 - a)) |
Subscript[A, 2] == Divide[x*(x + 3 - a),(x)^(2)+ 2*(2 - a)*x +(1 - a)*(2 - a)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.10#Ex4 | B_{2} = \frac{x^{2}+(5-a)x+2}{x^{2}+2(3-a)x+(2-a)(3-a)} |
|
B[2] = ((x)^(2)+(5 - a)*x + 2)/((x)^(2)+ 2*(3 - a)*x +(2 - a)*(3 - a)) |
Subscript[B, 2] == Divide[(x)^(2)+(5 - a)*x + 2,(x)^(2)+ 2*(3 - a)*x +(2 - a)*(3 - a)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.10.E7 | I = \int_{0}^{x}t^{a-1}e^{t}\diff{t} |
I = int((t)^(a - 1)* exp(t), t = 0..x)
|
I == Integrate[(t)^(a - 1)* Exp[t], {t, 0, x}, GenerateConditions->None]
|
Failure | Failure | Failed [90 / 90] Result: -2.374226751+.5000000000*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = 1.5, x = 1.5}
Result: .5451660792+.5000000000*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = 1.5, x = .5}
... skip entries to safe data |
Failed [27 / 27]
Result: Complex[-2.240252154794788, -4.0113152157384396*^-17]
Test Values: {Rule[Complex[0, 1], 1], Rule[a, 1.5], Rule[x, 1.5]}
Result: Complex[-1.240252154794788, -4.0113152157384396*^-17]
Test Values: {Rule[Complex[0, 1], 2], Rule[a, 1.5], Rule[x, 1.5]}
... skip entries to safe data | |
8.10.E7 | \int_{0}^{x}t^{a-1}e^{t}\diff{t} = \EulerGamma@{a}x^{a}\scincgamma@{a}{-x} |
int((t)^(a - 1)* exp(t), t = 0..x) = GAMMA(a)*(x)^(a)* (- x)^(-(a))*(GAMMA(a)-GAMMA(a, - x))/GAMMA(a)
|
Error
|
Failure | Missing Macro Error | Successful [Tested: 9] | Skip - symbolical successful subtest | |
8.10.E8 | \frac{(a+1)(a+2)-x}{(a+1)(a+2+x)} < ax^{-a}e^{-x}I |
((a + 1)*(a + 2)- x)/((a + 1)*(a + 2 + x)) < a*(x)^(- a)* exp(- x)*I |
Divide[(a + 1)*(a + 2)- x,(a + 1)*(a + 2 + x)] < a*(x)^(- a)* Exp[- x]*I |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
8.10#Ex5 | c_{a} = (\EulerGamma@{1+a})^{1/(a-1)} |
c[a] = (GAMMA(1 + a))^(1/(a - 1))
|
Subscript[c, a] == (Gamma[1 + a])^(1/(a - 1))
|
Failure | Failure | Failed [39 / 40] Result: -.9011204630+.5000000000*I
Test Values: {a = 1.5, c[a] = 1/2*3^(1/2)+1/2*I}
Result: -2.267145867+.8660254040*I
Test Values: {a = 1.5, c[a] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [39 / 40]
Result: Complex[-0.9011204638598199, 0.49999999999999994]
Test Values: {Rule[a, 1.5], Rule[Subscript[c, a], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.2671458676442584, 0.8660254037844387]
Test Values: {Rule[a, 1.5], Rule[Subscript[c, a], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.10#Ex6 | d_{a} = (\EulerGamma@{1+a})^{-1/a} |
d[a] = (GAMMA(1 + a))^(- 1/a)
|
Subscript[d, a] == (Gamma[1 + a])^(- 1/a)
|
Failure | Failure | Failed [40 / 40] Result: .388914161e-1+.5000000000*I
Test Values: {a = 1.5, d[a] = 1/2*3^(1/2)+1/2*I}
Result: -1.327133988+.8660254040*I
Test Values: {a = 1.5, d[a] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [40 / 40]
Result: Complex[0.038891415918572037, 0.49999999999999994]
Test Values: {Rule[a, 1.5], Rule[Subscript[d, a], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.3271339878658663, 0.8660254037844387]
Test Values: {Rule[a, 1.5], Rule[Subscript[d, a], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.10.E10 | \frac{x}{2a}\left(\left(1+\frac{2}{x}\right)^{a}-1\right) < x^{1-a}e^{x}\incGamma@{a}{x} |
(x)/(2*a)*((1 +(2)/(x))^(a)- 1) < (x)^(1 - a)* exp(x)*GAMMA(a, x)
|
Divide[x,2*a]*((1 +Divide[2,x])^(a)- 1) < (x)^(1 - a)* Exp[x]*Gamma[a, x]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
8.10.E10 | x^{1-a}e^{x}\incGamma@{a}{x} \leq \frac{x}{ac_{a}}\left(\left(1+\frac{c_{a}}{x}\right)^{a}-1\right) |
(x)^(1 - a)* exp(x)*GAMMA(a, x) <= (x)/(a*c[a])*((1 +(c[a])/(x))^(a)- 1)
|
(x)^(1 - a)* Exp[x]*Gamma[a, x] <= Divide[x,a*Subscript[c, a]]*((1 +Divide[Subscript[c, a],x])^(a)- 1)
|
Failure | Failure | Failed [3 / 30] Result: .8100694499 <= .7912878480
Test Values: {a = .5, x = 1.5, c[a] = 2}
Result: .6556795425 <= .6180339885
Test Values: {a = .5, x = .5, c[a] = 2}
... skip entries to safe data |
Failed [18 / 30]
Result: LessEqual[0.8100694501969615, Complex[0.8808481919138387, -0.05137441674828974]]
Test Values: {Rule[a, 0.5], Rule[x, 1.5], Rule[Subscript[c, a], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: LessEqual[0.8100694501969615, Complex[1.0324243733930456, -0.1801654927820326]]
Test Values: {Rule[a, 0.5], Rule[x, 1.5], Rule[Subscript[c, a], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.10.E11 | (1-e^{-\alpha_{a}x})^{a} \leq \normincGammaP@{a}{x} |
(1 - exp(- alpha[a]*x))^(a) <= (GAMMA(a)-GAMMA(a, x))/GAMMA(a)
|
(1 - Exp[- Subscript[\[Alpha], a]*x])^(a) <= GammaRegularized[a, 0, x]
|
Failure | Failure | Failed [78 / 270] Result: .8461432717 <= .6083748237
Test Values: {a = 1.5, alpha = 1.5, x = 1.5, alpha[a] = 1.5}
Result: .9262567903 <= .6083748237
Test Values: {a = 1.5, alpha = 1.5, x = 1.5, alpha[a] = 2}
... skip entries to safe data |
Failed [240 / 270]
Result: LessEqual[Complex[0.7016331692747775, 0.2500919864059583], 0.608374823728911]
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[α, 1.5], Rule[Subscript[α, a], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: LessEqual[Complex[-1.369574242346028, 2.679891945423719], 0.608374823728911]
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[α, 1.5], Rule[Subscript[α, a], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.10.E11 | \normincGammaP@{a}{x} \leq (1-e^{-\beta_{a}x})^{a} |
(GAMMA(a)-GAMMA(a, x))/GAMMA(a) <= (1 - exp(- beta[a]*x))^(a)
|
GammaRegularized[a, 0, x] <= (1 - Exp[- Subscript[\[Beta], a]*x])^(a)
|
Failure | Failure | Failed [30 / 270] Result: .6083748237 <= .3832643966
Test Values: {a = 1.5, beta = 1.5, x = 1.5, beta[a] = .5}
Result: .1987480431 <= .1040340193
Test Values: {a = 1.5, beta = 1.5, x = .5, beta[a] = .5}
... skip entries to safe data |
Failed [192 / 270]
Result: LessEqual[0.608374823728911, Complex[0.7016331692747775, 0.2500919864059583]]
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[β, 1.5], Rule[Subscript[β, a], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: LessEqual[0.608374823728911, Complex[-1.369574242346028, 2.679891945423719]]
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[β, 1.5], Rule[Subscript[β, a], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.10.E13 | \frac{\incGamma@{n}{n}}{\EulerGamma@{n}} < \frac{1}{2} |
(GAMMA(n, n))/(GAMMA(n)) < (1)/(2)
|
Divide[Gamma[n, n],Gamma[n]] < Divide[1,2]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 1] | |
8.10.E13 | \frac{1}{2} < \frac{\incGamma@{n}{n-1}}{\EulerGamma@{n}} |
(1)/(2) < (GAMMA(n, n - 1))/(GAMMA(n))
|
Divide[1,2] < Divide[Gamma[n, n - 1],Gamma[n]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 1] |