Error Functions, Dawson’s and Fresnel Integrals - 7.11 Relations to Other Functions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.11.E1 | \erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}} |
|
erf(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2))
|
Erf[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], 0, (z)^(2)]
|
Failure | Failure | Failed [7 / 7] Result: .756123263e-1-.1955582163*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -1.938247417+2.376161732*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [2 / 7]
Result: Complex[-1.955452759718527, 1.7141217559576072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-1.8042282364091204, -0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
7.11.E2 | \erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}} |
|
erfc(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2), (z)^(2))
|
Erfc[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], (z)^(2)]
|
Failure | Failure | Failed [2 / 7] Result: 1.955452760-1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[1.8042282364091202, 0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
7.11.E3 | \erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}} |
|
erfc(z) = (z)/(sqrt(Pi))*Ei((1)/(2), (z)^(2))
|
Erfc[z] == Divide[z,Sqrt[Pi]]*ExpIntegralE[Divide[1,2], (z)^(2)]
|
Failure | Failure | Failed [2 / 7] Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[2.0000000000000004, -7.771561172376096*^-16]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[1.9999999999999998, -5.551115123125783*^-17]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
7.11.E4 | \erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} |
|
erf(z) = (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2))
|
Erf[z] == Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]
|
Successful | Successful | - | Successful [Tested: 7] |
7.11.E4 | \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}} |
|
(2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) = (2*z)/(sqrt(Pi))*exp(- (z)^(2))*KummerM(1, (3)/(2), (z)^(2))
|
Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[2*z,Sqrt[Pi]]*Exp[- (z)^(2)]*Hypergeometric1F1[1, Divide[3,2], (z)^(2)]
|
Successful | Successful | - | Successful [Tested: 7] |
7.11.E5 | \erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} |
|
erfc(z) = (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2))
|
Erfc[z] == Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]
|
Failure | Failure | Failed [2 / 7] Result: 1.955452760-1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[1.8042282364091202, 0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
7.11.E5 | \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}} |
|
(1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) = (z)/(sqrt(Pi))*exp(- (z)^(2))*KummerU(1, (3)/(2), (z)^(2))
|
Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Divide[z,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[1, Divide[3,2], (z)^(2)]
|
Failure | Failure | Failed [2 / 7] Result: .4454723945e-1+1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: .1957717634-.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[0.04454724028147337, 1.7141217559576065]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.19577176359087947, -0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
7.11.E6 | \Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} |
|
FresnelC(z)+ I*FresnelS(z) = z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2))
|
FresnelC[z]+ I*FresnelS[z] == z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
7.11.E6 | z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}} |
|
z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) = z*exp(Pi*I*(z)^(2)/2)*KummerM(1, (3)/(2), -(1)/(2)*Pi*I*(z)^(2))
|
z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] == z*Exp[Pi*I*(z)^(2)/2]*Hypergeometric1F1[1, Divide[3,2], -Divide[1,2]*Pi*I*(z)^(2)]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
7.11.E7 | \Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}} |
|
FresnelC(z) = z*hypergeom([(1)/(4)], [(5)/(4),(1)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))
|
FresnelC[z] == z*HypergeometricPFQ[{Divide[1,4]}, {Divide[5,4],Divide[1,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]
|
Successful | Successful | - | Successful [Tested: 7] |
7.11.E8 | \Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}} |
|
FresnelS(z) = (1)/(6)*Pi*(z)^(3)* hypergeom([(3)/(4)], [(7)/(4),(3)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))
|
FresnelS[z] == Divide[1,6]*Pi*(z)^(3)* HypergeometricPFQ[{Divide[3,4]}, {Divide[7,4],Divide[3,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]
|
Successful | Successful | - | Successful [Tested: 7] |