Error Functions, Dawson’s and Fresnel Integrals - 7.10 Derivatives

From testwiki
Revision as of 11:16, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.10.E1 d n + 1 erf z d z n + 1 = ( - 1 ) n 2 π H n ( z ) e - z 2 derivative error-function 𝑧 𝑧 𝑛 1 superscript 1 𝑛 2 𝜋 Hermite-polynomial-H 𝑛 𝑧 superscript 𝑒 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n+1}\operatorname{erf}z}{{% \mathrm{d}z}^{n+1}}=(-1)^{n}\frac{2}{\sqrt{\pi}}H_{n}\left(z\right)e^{-z^{2}}}}
\deriv[n+1]{\erf@@{z}}{z} = (-1)^{n}\frac{2}{\sqrt{\pi}}\HermitepolyH{n}@{z}e^{-z^{2}}

diff(erf(z), [z$(n + 1)]) = (- 1)^(n)*(2)/(sqrt(Pi))*HermiteH(n, z)*exp(- (z)^(2))
D[Erf[z], {z, n + 1}] == (- 1)^(n)*Divide[2,Sqrt[Pi]]*HermiteH[n, z]*Exp[- (z)^(2)]
Failure Failure Manual Skip!
Failed [7 / 7]
Result: Plus[Complex[-3.565180358777125, 6.304771054937664], D[Complex[0.90211411820456, 0.25316491871645536]
Test Values: {Complex[0.8660254037844387, 0.49999999999999994], 4.0}]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[31.601340663516154, 7.3148164199817], D[Complex[-0.9777263798592635, 0.8570608779788039]
Test Values: {Complex[-0.4999999999999998, 0.8660254037844387], 4.0}]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
7.10#Ex1 d f ( z ) d z = - π z g ( z ) derivative Fresnel-auxilliary-function-f 𝑧 𝑧 𝜋 𝑧 Fresnel-auxilliary-function-g 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}\mathrm{f}\left(z\right)}{\mathrm{% d}z}=-\pi z\mathrm{g}\left(z\right)}}
\deriv{\auxFresnelf@{z}}{z} = -\pi z\auxFresnelg@{z}

diff(Fresnelf(z), z) = - Pi*z*Fresnelg(z)
D[FresnelF[z], z] == - Pi*z*FresnelG[z]
Successful Successful - Successful [Tested: 7]
7.10#Ex2 d g ( z ) d z = π z f ( z ) - 1 derivative Fresnel-auxilliary-function-g 𝑧 𝑧 𝜋 𝑧 Fresnel-auxilliary-function-f 𝑧 1 {\displaystyle{\displaystyle\frac{\mathrm{d}\mathrm{g}\left(z\right)}{\mathrm{% d}z}=\pi z\mathrm{f}\left(z\right)-1}}
\deriv{\auxFresnelg@{z}}{z} = \pi z\auxFresnelf@{z}-1

diff(Fresnelg(z), z) = Pi*z*Fresnelf(z)- 1
D[FresnelG[z], z] == Pi*z*FresnelF[z]- 1
Successful Successful - Successful [Tested: 7]