Error Functions, Dawson’s and Fresnel Integrals - 7.4 Symmetry
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.4.E1 | \erf@{-z} = -\erf@{z} |
|
erf(- z) = - erf(z)
|
Erf[- z] == - Erf[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4.E2 | \erfc@{-z} = 2-\erfc@{z} |
|
erfc(- z) = 2 - erfc(z)
|
Erfc[- z] == 2 - Erfc[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4.E4 | \DawsonsintF@{-z} = -\DawsonsintF@{z} |
|
dawson(- z) = - dawson(z)
|
DawsonF[- z] == - DawsonF[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4#Ex1 | \Fresnelcosint@{-z} = -\Fresnelcosint@{z} |
|
FresnelC(- z) = - FresnelC(z)
|
FresnelC[- z] == - FresnelC[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4#Ex2 | \Fresnelsinint@{-z} = -\Fresnelsinint@{z} |
|
FresnelS(- z) = - FresnelS(z)
|
FresnelS[- z] == - FresnelS[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4#Ex3 | \Fresnelcosint@{iz} = i\Fresnelcosint@{z} |
|
FresnelC(I*z) = I*FresnelC(z)
|
FresnelC[I*z] == I*FresnelC[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4#Ex4 | \Fresnelsinint@{iz} = -i\Fresnelsinint@{z} |
|
FresnelS(I*z) = - I*FresnelS(z)
|
FresnelS[I*z] == - I*FresnelS[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4#Ex5 | \auxFresnelf@{iz} = (1/\sqrt{2})e^{\frac{1}{4}\pi i-\frac{1}{2}\pi iz^{2}}-i\auxFresnelf@{z} |
|
Fresnelf(I*z) = (1/(sqrt(2)))*exp((1)/(4)*Pi*I -(1)/(2)*Pi*I*(z)^(2))- I*Fresnelf(z)
|
FresnelF[I*z] == (1/(Sqrt[2]))*Exp[Divide[1,4]*Pi*I -Divide[1,2]*Pi*I*(z)^(2)]- I*FresnelF[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
7.4#Ex6 | \auxFresnelg@{iz} = (1/\sqrt{2})e^{-\frac{1}{4}\pi i-\frac{1}{2}\pi iz^{2}}+i\auxFresnelg@{z} |
|
Fresnelg(I*z) = (1/(sqrt(2)))*exp(-(1)/(4)*Pi*I -(1)/(2)*Pi*I*(z)^(2))+ I*Fresnelg(z)
|
FresnelG[I*z] == (1/(Sqrt[2]))*Exp[-Divide[1,4]*Pi*I -Divide[1,2]*Pi*I*(z)^(2)]+ I*FresnelG[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
7.4#Ex7 | \auxFresnelf@{-z} = \sqrt{2}\cos@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi z^{2}}-\auxFresnelf@{z} |
|
Fresnelf(- z) = sqrt(2)*cos((1)/(4)*Pi +(1)/(2)*Pi*(z)^(2))- Fresnelf(z)
|
FresnelF[- z] == Sqrt[2]*Cos[Divide[1,4]*Pi +Divide[1,2]*Pi*(z)^(2)]- FresnelF[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.4#Ex8 | \auxFresnelg@{-z} = \sqrt{2}\sin@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z} |
|
Fresnelg(- z) = sqrt(2)*sin((1)/(4)*Pi +(1)/(2)*Pi*(z)^(2))- Fresnelg(z)
|
FresnelG[- z] == Sqrt[2]*Sin[Divide[1,4]*Pi +Divide[1,2]*Pi*(z)^(2)]- FresnelG[z]
|
Successful | Failure | - | Successful [Tested: 7] |