Exponential, Logarithmic, Sine, and Cosine Integrals - 7.2 Definitions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.2.E1 | \erf@@{z} = \frac{2}{\sqrt{\pi}}\int_{0}^{z}e^{-t^{2}}\diff{t} |
|
erf(z) = (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = 0..z)
|
Erf[z] == Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2.E2 | \erfc@@{z} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t} |
|
erfc(z) = (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity)
|
Erfc[z] == Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2.E2 | \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t} = 1-\erf@@{z} |
|
(2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity) = 1 - erf(z)
|
Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] == 1 - Erf[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2.E3 | e^{-z^{2}}\left(1+\frac{2i}{\sqrt{\pi}}\int_{0}^{z}e^{t^{2}}\diff{t}\right) = e^{-z^{2}}\erfc@{-iz} |
|
exp(- (z)^(2))*(1 +(2*I)/(sqrt(Pi))*int(exp((t)^(2)), t = 0..z)) = exp(- (z)^(2))*erfc(- I*z)
|
Exp[- (z)^(2)]*(1 +Divide[2*I,Sqrt[Pi]]*Integrate[Exp[(t)^(2)], {t, 0, z}, GenerateConditions->None]) == Exp[- (z)^(2)]*Erfc[- I*z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2#Ex1 | \lim_{z\to\infty}\erf@@{z} = 1 |
|
limit(erf(z), z = infinity) = 1
|
Limit[Erf[z], z -> Infinity, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
7.2#Ex2 | \lim_{z\to\infty}\erfc@@{z} = 0 |
limit(erfc(z), z = infinity) = 0
|
Limit[Erfc[z], z -> Infinity, GenerateConditions->None] == 0
|
Successful | Successful | - | Successful [Tested: 1] | |
7.2.E5 | \DawsonsintF@{z} = e^{-z^{2}}\int_{0}^{z}e^{t^{2}}\diff{t} |
|
dawson(z) = exp(- (z)^(2))*int(exp((t)^(2)), t = 0..z)
|
DawsonF[z] == Exp[- (z)^(2)]*Integrate[Exp[(t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2.E6 | \FresnelintF@{z} = \int_{z}^{\infty}e^{\tfrac{1}{2}\pi\iunit t^{2}}\diff{t} |
|
Error
|
(1+I)/2-FresnelC[z]-I*FresnelS[z] == Integrate[Exp[Divide[1,2]*Pi*I*(t)^(2)], {t, z, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [2 / 7]
Result: Complex[-0.17236809983536389, -1.1316008349021112]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.17236809983536283, 1.1316008349021118]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
|
7.2.E7 | \Fresnelcosint@{z} = \int_{0}^{z}\cos@{\tfrac{1}{2}\pi t^{2}}\diff{t} |
|
FresnelC(z) = int(cos((1)/(2)*Pi*(t)^(2)), t = 0..z)
|
FresnelC[z] == Integrate[Cos[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2.E8 | \Fresnelsinint@{z} = \int_{0}^{z}\sin@{\tfrac{1}{2}\pi t^{2}}\diff{t} |
|
FresnelS(z) = int(sin((1)/(2)*Pi*(t)^(2)), t = 0..z)
|
FresnelS[z] == Integrate[Sin[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2#Ex3 | \lim_{x\to\infty}\Fresnelcosint@{x} = \tfrac{1}{2} |
|
limit(FresnelC(x), x = infinity) = (1)/(2)
|
Limit[FresnelC[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]
|
Successful | Successful | - | Successful [Tested: 1] |
7.2#Ex4 | \lim_{x\to\infty}\Fresnelsinint@{x} = \tfrac{1}{2} |
|
limit(FresnelS(x), x = infinity) = (1)/(2)
|
Limit[FresnelS[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]
|
Successful | Successful | - | Successful [Tested: 1] |
7.2.E10 | \auxFresnelf@{z} = \left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}-\left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}} |
|
Fresnelf(z) = ((1)/(2)- FresnelS(z))*cos((1)/(2)*Pi*(z)^(2))-((1)/(2)- FresnelC(z))*sin((1)/(2)*Pi*(z)^(2))
|
FresnelF[z] == (Divide[1,2]- FresnelS[z])*Cos[Divide[1,2]*Pi*(z)^(2)]-(Divide[1,2]- FresnelC[z])*Sin[Divide[1,2]*Pi*(z)^(2)]
|
Successful | Successful | - | Successful [Tested: 7] |
7.2.E11 | \auxFresnelg@{z} = \left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}+\left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}} |
|
Fresnelg(z) = ((1)/(2)- FresnelC(z))*cos((1)/(2)*Pi*(z)^(2))+((1)/(2)- FresnelS(z))*sin((1)/(2)*Pi*(z)^(2))
|
FresnelG[z] == (Divide[1,2]- FresnelC[z])*Cos[Divide[1,2]*Pi*(z)^(2)]+(Divide[1,2]- FresnelS[z])*Sin[Divide[1,2]*Pi*(z)^(2)]
|
Successful | Successful | - | Successful [Tested: 7] |