Exponential, Logarithmic, Sine, and Cosine Integrals - 7.2 Definitions

From testwiki
Revision as of 11:15, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.2.E1 erf z = 2 π 0 z e - t 2 d t error-function 𝑧 2 𝜋 superscript subscript 0 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\operatorname{erf}z=\frac{2}{\sqrt{\pi}}\int_{0}^{% z}e^{-t^{2}}\mathrm{d}t}}
\erf@@{z} = \frac{2}{\sqrt{\pi}}\int_{0}^{z}e^{-t^{2}}\diff{t}

erf(z) = (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = 0..z)
Erf[z] == Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
7.2.E2 erfc z = 2 π z e - t 2 d t complementary-error-function 𝑧 2 𝜋 superscript subscript 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\operatorname{erfc}z=\frac{2}{\sqrt{\pi}}\int_{z}^% {\infty}e^{-t^{2}}\mathrm{d}t}}
\erfc@@{z} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t}

erfc(z) = (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity)
Erfc[z] == Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
7.2.E2 2 π z e - t 2 d t = 1 - erf z 2 𝜋 superscript subscript 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 1 error-function 𝑧 {\displaystyle{\displaystyle\frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}% \mathrm{d}t=1-\operatorname{erf}z}}
\frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t} = 1-\erf@@{z}

(2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity) = 1 - erf(z)
Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] == 1 - Erf[z]
Successful Successful - Successful [Tested: 7]
7.2.E3 e - z 2 ( 1 + 2 i π 0 z e t 2 d t ) = e - z 2 erfc ( - i z ) superscript 𝑒 superscript 𝑧 2 1 2 𝑖 𝜋 superscript subscript 0 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 superscript 𝑒 superscript 𝑧 2 complementary-error-function 𝑖 𝑧 {\displaystyle{\displaystyle e^{-z^{2}}\left(1+\frac{2i}{\sqrt{\pi}}\int_{0}^{% z}e^{t^{2}}\mathrm{d}t\right)=e^{-z^{2}}\operatorname{erfc}\left(-iz\right)}}
e^{-z^{2}}\left(1+\frac{2i}{\sqrt{\pi}}\int_{0}^{z}e^{t^{2}}\diff{t}\right) = e^{-z^{2}}\erfc@{-iz}

exp(- (z)^(2))*(1 +(2*I)/(sqrt(Pi))*int(exp((t)^(2)), t = 0..z)) = exp(- (z)^(2))*erfc(- I*z)
Exp[- (z)^(2)]*(1 +Divide[2*I,Sqrt[Pi]]*Integrate[Exp[(t)^(2)], {t, 0, z}, GenerateConditions->None]) == Exp[- (z)^(2)]*Erfc[- I*z]
Successful Successful - Successful [Tested: 7]
7.2#Ex1 lim z erf z = 1 subscript 𝑧 error-function 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to\infty}\operatorname{erf}z=1}}
\lim_{z\to\infty}\erf@@{z} = 1

limit(erf(z), z = infinity) = 1
Limit[Erf[z], z -> Infinity, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
7.2#Ex2 lim z erfc z = 0 subscript 𝑧 complementary-error-function 𝑧 0 {\displaystyle{\displaystyle\lim_{z\to\infty}\operatorname{erfc}z=0}}
\lim_{z\to\infty}\erfc@@{z} = 0
| ph z | 1 4 π - δ ( < 1 4 π ) phase 𝑧 annotated 1 4 𝜋 𝛿 absent 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{4}\pi-\delta(<% \tfrac{1}{4}\pi)}}
limit(erfc(z), z = infinity) = 0
Limit[Erfc[z], z -> Infinity, GenerateConditions->None] == 0
Successful Successful - Successful [Tested: 1]
7.2.E5 F ( z ) = e - z 2 0 z e t 2 d t Dawsons-integral 𝑧 superscript 𝑒 superscript 𝑧 2 superscript subscript 0 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle F\left(z\right)=e^{-z^{2}}\int_{0}^{z}e^{t^{2}}% \mathrm{d}t}}
\DawsonsintF@{z} = e^{-z^{2}}\int_{0}^{z}e^{t^{2}}\diff{t}

dawson(z) = exp(- (z)^(2))*int(exp((t)^(2)), t = 0..z)
DawsonF[z] == Exp[- (z)^(2)]*Integrate[Exp[(t)^(2)], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
7.2.E6 ( z ) = z e 1 2 π i t 2 d t Fresnel-integral 𝑧 superscript subscript 𝑧 superscript 𝑒 1 2 𝜋 imaginary-unit superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\mathcal{F}\left(z\right)=\int_{z}^{\infty}e^{% \tfrac{1}{2}\pi\mathrm{i}t^{2}}\mathrm{d}t}}
\FresnelintF@{z} = \int_{z}^{\infty}e^{\tfrac{1}{2}\pi\iunit t^{2}}\diff{t}

Error
(1+I)/2-FresnelC[z]-I*FresnelS[z] == Integrate[Exp[Divide[1,2]*Pi*I*(t)^(2)], {t, z, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [2 / 7]
Result: Complex[-0.17236809983536389, -1.1316008349021112]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.17236809983536283, 1.1316008349021118]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

7.2.E7 C ( z ) = 0 z cos ( 1 2 π t 2 ) d t Fresnel-cosine-integral 𝑧 superscript subscript 0 𝑧 1 2 𝜋 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle C\left(z\right)=\int_{0}^{z}\cos\left(\tfrac{1}{2% }\pi t^{2}\right)\mathrm{d}t}}
\Fresnelcosint@{z} = \int_{0}^{z}\cos@{\tfrac{1}{2}\pi t^{2}}\diff{t}

FresnelC(z) = int(cos((1)/(2)*Pi*(t)^(2)), t = 0..z)
FresnelC[z] == Integrate[Cos[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
7.2.E8 S ( z ) = 0 z sin ( 1 2 π t 2 ) d t Fresnel-sine-integral 𝑧 superscript subscript 0 𝑧 1 2 𝜋 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle S\left(z\right)=\int_{0}^{z}\sin\left(\tfrac{1}{2% }\pi t^{2}\right)\mathrm{d}t}}
\Fresnelsinint@{z} = \int_{0}^{z}\sin@{\tfrac{1}{2}\pi t^{2}}\diff{t}

FresnelS(z) = int(sin((1)/(2)*Pi*(t)^(2)), t = 0..z)
FresnelS[z] == Integrate[Sin[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
7.2#Ex3 lim x C ( x ) = 1 2 subscript 𝑥 Fresnel-cosine-integral 𝑥 1 2 {\displaystyle{\displaystyle\lim_{x\to\infty}C\left(x\right)=\tfrac{1}{2}}}
\lim_{x\to\infty}\Fresnelcosint@{x} = \tfrac{1}{2}

limit(FresnelC(x), x = infinity) = (1)/(2)
Limit[FresnelC[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]
7.2#Ex4 lim x S ( x ) = 1 2 subscript 𝑥 Fresnel-sine-integral 𝑥 1 2 {\displaystyle{\displaystyle\lim_{x\to\infty}S\left(x\right)=\tfrac{1}{2}}}
\lim_{x\to\infty}\Fresnelsinint@{x} = \tfrac{1}{2}

limit(FresnelS(x), x = infinity) = (1)/(2)
Limit[FresnelS[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]
7.2.E10 f ( z ) = ( 1 2 - S ( z ) ) cos ( 1 2 π z 2 ) - ( 1 2 - C ( z ) ) sin ( 1 2 π z 2 ) Fresnel-auxilliary-function-f 𝑧 1 2 Fresnel-sine-integral 𝑧 1 2 𝜋 superscript 𝑧 2 1 2 Fresnel-cosine-integral 𝑧 1 2 𝜋 superscript 𝑧 2 {\displaystyle{\displaystyle\mathrm{f}\left(z\right)=\left(\tfrac{1}{2}-S\left% (z\right)\right)\cos\left(\tfrac{1}{2}\pi z^{2}\right)-\left(\tfrac{1}{2}-C% \left(z\right)\right)\sin\left(\tfrac{1}{2}\pi z^{2}\right)}}
\auxFresnelf@{z} = \left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}-\left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}}

Fresnelf(z) = ((1)/(2)- FresnelS(z))*cos((1)/(2)*Pi*(z)^(2))-((1)/(2)- FresnelC(z))*sin((1)/(2)*Pi*(z)^(2))
FresnelF[z] == (Divide[1,2]- FresnelS[z])*Cos[Divide[1,2]*Pi*(z)^(2)]-(Divide[1,2]- FresnelC[z])*Sin[Divide[1,2]*Pi*(z)^(2)]
Successful Successful - Successful [Tested: 7]
7.2.E11 g ( z ) = ( 1 2 - C ( z ) ) cos ( 1 2 π z 2 ) + ( 1 2 - S ( z ) ) sin ( 1 2 π z 2 ) Fresnel-auxilliary-function-g 𝑧 1 2 Fresnel-cosine-integral 𝑧 1 2 𝜋 superscript 𝑧 2 1 2 Fresnel-sine-integral 𝑧 1 2 𝜋 superscript 𝑧 2 {\displaystyle{\displaystyle\mathrm{g}\left(z\right)=\left(\tfrac{1}{2}-C\left% (z\right)\right)\cos\left(\tfrac{1}{2}\pi z^{2}\right)+\left(\tfrac{1}{2}-S% \left(z\right)\right)\sin\left(\tfrac{1}{2}\pi z^{2}\right)}}
\auxFresnelg@{z} = \left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}+\left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}}

Fresnelg(z) = ((1)/(2)- FresnelC(z))*cos((1)/(2)*Pi*(z)^(2))+((1)/(2)- FresnelS(z))*sin((1)/(2)*Pi*(z)^(2))
FresnelG[z] == (Divide[1,2]- FresnelC[z])*Cos[Divide[1,2]*Pi*(z)^(2)]+(Divide[1,2]- FresnelS[z])*Sin[Divide[1,2]*Pi*(z)^(2)]
Successful Successful - Successful [Tested: 7]