Exponential, Logarithmic, Sine, and Cosine Integrals - 6.8 Inequalities

From testwiki
Revision as of 11:14, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.8.E1 1 2 ln ( 1 + 2 x ) < e x E 1 ( x ) 1 2 1 2 𝑥 superscript 𝑒 𝑥 exponential-integral 𝑥 {\displaystyle{\displaystyle\frac{1}{2}\ln\left(1+\frac{2}{x}\right)<e^{x}E_{1% }\left(x\right)}}
\frac{1}{2}\ln@{1+\frac{2}{x}} < e^{x}\expintE@{x}

(1)/(2)*ln(1 +(2)/(x)) < exp(x)*Ei(x)
Divide[1,2]*Log[1 +Divide[2,x]] < Exp[x]*ExpIntegralE[1, x]
Failure Failure
Failed [1 / 3]
Result: .8047189560 < .7488820189
Test Values: {x = .5}

Successful [Tested: 3]
6.8.E1 e x E 1 ( x ) < ln ( 1 + 1 x ) superscript 𝑒 𝑥 exponential-integral 𝑥 1 1 𝑥 {\displaystyle{\displaystyle e^{x}E_{1}\left(x\right)<\ln\left(1+\frac{1}{x}% \right)}}
e^{x}\expintE@{x} < \ln@{1+\frac{1}{x}}

exp(x)*Ei(x) < ln(1 +(1)/(x))
Exp[x]*ExpIntegralE[1, x] < Log[1 +Divide[1,x]]
Failure Failure
Failed [2 / 3]
Result: 14.79533491 < .5108256240
Test Values: {x = 1.5}

Result: 36.60711558 < .4054651081
Test Values: {x = 2}

Successful [Tested: 3]
6.8.E2 x x + 1 < x e x E 1 ( x ) 𝑥 𝑥 1 𝑥 superscript 𝑒 𝑥 exponential-integral 𝑥 {\displaystyle{\displaystyle\frac{x}{x+1}<xe^{x}E_{1}\left(x\right)}}
\frac{x}{x+1} < xe^{x}\expintE@{x}

(x)/(x + 1) < x*exp(x)*Ei(x)
Divide[x,x + 1] < x*Exp[x]*ExpIntegralE[1, x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
6.8.E2 x e x E 1 ( x ) < x + 1 x + 2 𝑥 superscript 𝑒 𝑥 exponential-integral 𝑥 𝑥 1 𝑥 2 {\displaystyle{\displaystyle xe^{x}E_{1}\left(x\right)<\frac{x+1}{x+2}}}
xe^{x}\expintE@{x} < \frac{x+1}{x+2}

x*exp(x)*Ei(x) < (x + 1)/(x + 2)
x*Exp[x]*ExpIntegralE[1, x] < Divide[x + 1,x + 2]
Failure Failure
Failed [2 / 3]
Result: 22.19300237 < .7142857143
Test Values: {x = 1.5}

Result: 73.21423116 < .7500000000
Test Values: {x = 2}

Successful [Tested: 3]
6.8.E3 x ( x + 3 ) x 2 + 4 x + 2 < x e x E 1 ( x ) 𝑥 𝑥 3 superscript 𝑥 2 4 𝑥 2 𝑥 superscript 𝑒 𝑥 exponential-integral 𝑥 {\displaystyle{\displaystyle\frac{x(x+3)}{x^{2}+4x+2}<xe^{x}E_{1}\left(x\right% )}}
\frac{x(x+3)}{x^{2}+4x+2} < xe^{x}\expintE@{x}

(x*(x + 3))/((x)^(2)+ 4*x + 2) < x*exp(x)*Ei(x)
Divide[x*(x + 3),(x)^(2)+ 4*x + 2] < x*Exp[x]*ExpIntegralE[1, x]
Failure Failure
Failed [1 / 3]
Result: .4117647059 < .3744410095
Test Values: {x = .5}

Successful [Tested: 3]
6.8.E3 x e x E 1 ( x ) < x 2 + 5 x + 2 x 2 + 6 x + 6 𝑥 superscript 𝑒 𝑥 exponential-integral 𝑥 superscript 𝑥 2 5 𝑥 2 superscript 𝑥 2 6 𝑥 6 {\displaystyle{\displaystyle xe^{x}E_{1}\left(x\right)<\frac{x^{2}+5x+2}{x^{2}% +6x+6}}}
xe^{x}\expintE@{x} < \frac{x^{2}+5x+2}{x^{2}+6x+6}

x*exp(x)*Ei(x) < ((x)^(2)+ 5*x + 2)/((x)^(2)+ 6*x + 6)
x*Exp[x]*ExpIntegralE[1, x] < Divide[(x)^(2)+ 5*x + 2,(x)^(2)+ 6*x + 6]
Failure Failure
Failed [2 / 3]
Result: 22.19300237 < .6811594203
Test Values: {x = 1.5}

Result: 73.21423116 < .7272727273
Test Values: {x = 2}

Successful [Tested: 3]