Gamma Function - 6.2 Definitions and Interrelations
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
6.2.E1 | \expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t} |
Ei(z) = int((exp(- t))/(t), t = z..infinity)
|
ExpIntegralE[1, z] == Integrate[Divide[Exp[- t],t], {t, z, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] | |
6.2.E2 | \expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t} |
Ei(z) = exp(- z)*int((exp(- t))/(t + z), t = 0..infinity)
|
ExpIntegralE[1, z] == Exp[- z]*Integrate[Divide[Exp[- t],t + z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] | |
6.2.E3 | \expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t} |
|
Error
|
ExpIntegralE[1, z] + Ln[z] + EulerGamma == Integrate[Divide[1 - Exp[- t],t], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[0.0, -0.5235987755982988], Ln[Complex[0.8660254037844387, 0.49999999999999994]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, -2.0943951023931953], Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
6.2.E4 | \expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant |
|
Error
|
ExpIntegralE[1, z] == ExpIntegralE[1, z] + Ln[z] + EulerGamma - Log[z]- EulerGamma
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[0.0, 0.5235987755982988], Times[-1.0, Ln[Complex[0.8660254037844387, 0.49999999999999994]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, 2.0943951023931953], Times[-1.0, Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
6.2.E6 | \expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} |
|
Error
|
ExpIntegralEi[- x] == - Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | Skip - symbolical successful subtest | Successful [Tested: 3] |
6.2.E6 | -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x} |
|
- int((exp(- t))/(t), t = x..infinity) = - Ei(x)
|
- Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None] == - ExpIntegralE[1, x]
|
Failure | Failure | Failed [3 / 3] Result: 3.201265867
Test Values: {x = 1.5}
Result: -.1055536899
Test Values: {x = .5}
... skip entries to safe data |
Successful [Tested: 3] |
6.2.E7 | \expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant |
|
Error
|
ExpIntegralEi[+ x] == - ExpIntegralE[1, - x] + Ln[- x] + EulerGamma + Log[x]+ EulerGamma
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Plus[Complex[-1.5598964379112301, -3.141592653589793], Times[-1.0, Ln[-1.5]]]
Test Values: {Rule[x, 1.5]}
Result: Plus[Complex[-0.46128414924312044, -3.141592653589793], Times[-1.0, Ln[-0.5]]]
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
6.2.E7 | \expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant |
|
Error
|
ExpIntegralEi[- x] == - ExpIntegralE[1, + x] + Ln[+ x] + EulerGamma + Log[x]+ EulerGamma
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Plus[-1.5598964379112301, Times[-1.0, Ln[1.5]]]
Test Values: {Rule[x, 1.5]}
Result: Plus[-0.46128414924312044, Times[-1.0, Ln[0.5]]]
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
6.2.E9 | \sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t} |
|
Si(z) = int((sin(t))/(t), t = 0..z)
|
SinIntegral[z] == Integrate[Divide[Sin[t],t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E10 | \shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} |
|
Ssi(z) = - int((sin(t))/(t), t = z..infinity)
|
SinIntegral[z] - Pi/2 == - Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E10 | -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi |
|
- int((sin(t))/(t), t = z..infinity) = Si(z)-(1)/(2)*Pi
|
- Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None] == SinIntegral[z]-Divide[1,2]*Pi
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E11 | \cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t} |
|
Ci((z) ) = - int((cos(t))/(t), t = z..infinity)
|
CosIntegral[(z) ] == - Integrate[Divide[Cos[t],t], {t, z, Infinity}, GenerateConditions->None]
|
Translation Error | Translation Error | - | - |
6.2#Ex1 | \lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi |
|
limit(Si(x), x = infinity) = (1)/(2)*Pi
|
Limit[SinIntegral[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]*Pi
|
Successful | Successful | - | Successful [Tested: 1] |
6.2#Ex2 | \lim_{x\to\infty}\cosint@{x} = 0 |
|
limit(Ci(x), x = infinity) = 0
|
Limit[CosIntegral[x], x -> Infinity, GenerateConditions->None] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
6.2.E15 | \sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t} |
|
Shi(z) = int((sinh(t))/(t), t = 0..z)
|
SinhIntegral[z] == Integrate[Divide[Sinh[t],t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E16 | \coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t} |
|
Chi(z) = gamma + ln(z)+ int((cosh(t)- 1)/(t), t = 0..z)
|
CoshIntegral[z] == EulerGamma + Log[z]+ Integrate[Divide[Cosh[t]- 1,t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |