Gamma Function - 5.9 Integral Representations
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
5.9.E1 | \frac{1}{\mu}\EulerGamma@{\frac{\nu}{\mu}}\frac{1}{z^{\nu/\mu}} = \int_{0}^{\infty}\exp@{-zt^{\mu}}t^{\nu-1}\diff{t} |
|
(1)/(mu)*GAMMA((nu)/(mu))*(1)/((z)^(nu/mu)) = int(exp(- z*(t)^(mu))*(t)^(nu - 1), t = 0..infinity)
|
Divide[1,\[Mu]]*Gamma[Divide[\[Nu],\[Mu]]]*Divide[1,(z)^(\[Nu]/\[Mu])] == Integrate[Exp[- z*(t)^\[Mu]]*(t)^(\[Nu]- 1), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Successful [Tested: 300] |
5.9.E2 | \frac{1}{\EulerGamma@{z}} = \frac{1}{2\pi i}\int_{-\infty}^{(0+)}e^{t}t^{-z}\diff{t} |
(1)/(GAMMA(z)) = (1)/(2*Pi*I)*int(exp(t)*(t)^(- z), t = - infinity..(0 +))
|
Divide[1,Gamma[z]] == Divide[1,2*Pi*I]*Integrate[Exp[t]*(t)^(- z), {t, - Infinity, (0 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
5.9.E3 | c^{-z}\EulerGamma@{z} = \int_{-\infty}^{\infty}|t|^{2z-1}e^{-ct^{2}}\diff{t} |
(c)^(- z)* GAMMA(z) = int((abs(t))^(2*z - 1)* exp(- c*(t)^(2)), t = - infinity..infinity)
|
(c)^(- z)* Gamma[z] == Integrate[(Abs[t])^(2*z - 1)* Exp[- c*(t)^(2)], {t, - Infinity, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Missing Macro Error | - | - | |
5.9.E4 | \EulerGamma@{z} = \int_{1}^{\infty}t^{z-1}e^{-t}\diff{t}+\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(z+k)k!} |
GAMMA(z) = int((t)^(z - 1)* exp(- t), t = 1..infinity)+ sum(((- 1)^(k))/((z + k)*factorial(k)), k = 0..infinity)
|
Gamma[z] == Integrate[(t)^(z - 1)* Exp[- t], {t, 1, Infinity}, GenerateConditions->None]+ Sum[Divide[(- 1)^(k),(z + k)*(k)!], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Failed [1 / 5] Result: .9999999999-0.*I
Test Values: {z = 2, z = 1}
|
Successful [Tested: 1] | |
5.9.E5 | \EulerGamma@{z} = \int_{0}^{\infty}t^{z-1}\left(e^{-t}-\sum_{k=0}^{n}\frac{(-1)^{k}t^{k}}{k!}\right)\diff{t} |
GAMMA(z) = int((t)^(z - 1)*(exp(- t)- sum(((- 1)^(k)* (t)^(k))/(factorial(k)), k = 0..n)), t = 0..infinity)
|
Gamma[z] == Integrate[(t)^(z - 1)*(Exp[- t]- Sum[Divide[(- 1)^(k)* (t)^(k),(k)!], {k, 0, n}, GenerateConditions->None]), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Error | Skip - No test values generated | |
5.9.E6 | \EulerGamma@{z}\cos@{\tfrac{1}{2}\pi z} = \int_{0}^{\infty}t^{z-1}\cos@@{t}\diff{t} |
GAMMA(z)*cos((1)/(2)*Pi*z) = int((t)^(z - 1)* cos(t), t = 0..infinity)
|
Gamma[z]*Cos[Divide[1,2]*Pi*z] == Integrate[(t)^(z - 1)* Cos[t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 3] | |
5.9.E7 | \EulerGamma@{z}\sin@{\tfrac{1}{2}\pi z} = \int_{0}^{\infty}t^{z-1}\sin@@{t}\diff{t} |
GAMMA(z)*sin((1)/(2)*Pi*z) = int((t)^(z - 1)* sin(t), t = 0..infinity)
|
Gamma[z]*Sin[Divide[1,2]*Pi*z] == Integrate[(t)^(z - 1)* Sin[t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 3] | |
5.9.E8 | \EulerGamma@{1+\frac{1}{n}}\cos@{\frac{\pi}{2n}} = \int_{0}^{\infty}\cos@{t^{n}}\diff{t} |
|
GAMMA(1 +(1)/(n))*cos((Pi)/(2*n)) = int(cos((t)^(n)), t = 0..infinity)
|
Gamma[1 +Divide[1,n]]*Cos[Divide[Pi,2*n]] == Integrate[Cos[(t)^(n)], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
5.9.E9 | \EulerGamma@{1+\frac{1}{n}}\sin@{\frac{\pi}{2n}} = \int_{0}^{\infty}\sin@{t^{n}}\diff{t} |
|
GAMMA(1 +(1)/(n))*sin((Pi)/(2*n)) = int(sin((t)^(n)), t = 0..infinity)
|
Gamma[1 +Divide[1,n]]*Sin[Divide[Pi,2*n]] == Integrate[Sin[(t)^(n)], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
5.9.E10 | \Ln@@{\EulerGamma@{z}} = \left(z-\tfrac{1}{2}\right)\ln@@{z}-z+\tfrac{1}{2}\ln@{2\pi}+2\int_{0}^{\infty}\frac{\atan@{t/z}}{e^{2\pi t}-1}\diff{t} |
ln(GAMMA(z)) = (z -(1)/(2))*ln(z)- z +(1)/(2)*ln(2*Pi)+ 2*int((arctan(t/z))/(exp(2*Pi*t)- 1), t = 0..infinity)
|
Log[Gamma[z]] == (z -Divide[1,2])*Log[z]- z +Divide[1,2]*Log[2*Pi]+ 2*Integrate[Divide[ArcTan[t/z],Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 5] | Skipped - Because timed out | |
5.9.E11 | \Ln@@{\EulerGamma@{z+1}} = -\EulerConstant z-\frac{1}{2\pi i}\int_{-c-\infty i}^{-c+\infty i}\frac{\pi z^{-s}}{s\sin@{\pi s}}\Riemannzeta@{-s}\diff{s} |
ln(GAMMA(z + 1)) = - gamma*z -(1)/(2*Pi*I)*int((Pi*(z)^(- s))/(s*sin(Pi*s))*Zeta(- s), s = - c - infinity*I..- c + infinity*I)
|
Log[Gamma[z + 1]] == - EulerGamma*z -Divide[1,2*Pi*I]*Integrate[Divide[Pi*(z)^(- s),s*Sin[Pi*s]]*Zeta[- s], {s, - c - Infinity*I, - c + Infinity*I}, GenerateConditions->None]
|
Failure | Aborted | Failed [42 / 42] Result: .3627983593+.4645558136*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I}
Result: -.7321808519-.4375773776*I
Test Values: {c = -1.5, z = -1/2+1/2*I*3^(1/2)}
Result: -.1549651868-.6096201737*I
Test Values: {c = -1.5, z = 1/2-1/2*I*3^(1/2)}
Result: -.670593886e-1+1.175772123*I
Test Values: {c = -1.5, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Skipped - Because timed out | |
5.9.E12 | \digamma@{z} = \int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-zt}}{1-e^{-t}}\right)\diff{t} |
|
Psi(z) = int((exp(- t))/(t)-(exp(- z*t))/(1 - exp(- t)), t = 0..infinity)
|
PolyGamma[z] == Integrate[Divide[Exp[- t],t]-Divide[Exp[- z*t],1 - Exp[- t]], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [2 / 7] Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Successful [Tested: 1] |
5.9.E13 | \digamma@{z} = \ln@@{z}+\int_{0}^{\infty}\left(\frac{1}{t}-\frac{1}{1-e^{-t}}\right)e^{-tz}\diff{t} |
|
Psi(z) = ln(z)+ int(((1)/(t)-(1)/(1 - exp(- t)))*exp(- t*z), t = 0..infinity)
|
PolyGamma[z] == Log[z]+ Integrate[(Divide[1,t]-Divide[1,1 - Exp[- t]])*Exp[- t*z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [2 / 7] Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [1 / 1]
Result: Indeterminate
Test Values: {Rule[z, 1]}
|
5.9.E14 | \digamma@{z} = \int_{0}^{\infty}\left(e^{-t}-\frac{1}{(1+t)^{z}}\right)\frac{\diff{t}}{t} |
|
Psi(z) = int((exp(- t)-(1)/((1 + t)^(z)))*(1)/(t), t = 0..infinity)
|
PolyGamma[z] == Integrate[(Exp[- t]-Divide[1,(1 + t)^(z)])*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Skipped - Because timed out | Successful [Tested: 7] |
5.9.E15 | \digamma@{z} = \ln@@{z}-\frac{1}{2z}-2\int_{0}^{\infty}\frac{t\diff{t}}{(t^{2}+z^{2})(e^{2\pi t}-1)} |
|
Psi(z) = ln(z)-(1)/(2*z)- 2*int((t)/(((t)^(2)+ (z)^(2))*(exp(2*Pi*t)- 1)), t = 0..infinity)
|
PolyGamma[z] == Log[z]-Divide[1,2*z]- 2*Integrate[Divide[t,((t)^(2)+ (z)^(2))*(Exp[2*Pi*t]- 1)], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [2 / 7] Result: .4e-10-.2711020420e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -.2144560970-.1791125126*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Successful [Tested: 1] |
5.9.E16 | \digamma@{z}+\EulerConstant = \int_{0}^{\infty}\frac{e^{-t}-e^{-zt}}{1-e^{-t}}\diff{t} |
|
Psi(z)+ gamma = int((exp(- t)- exp(- z*t))/(1 - exp(- t)), t = 0..infinity)
|
PolyGamma[z]+ EulerGamma == Integrate[Divide[Exp[- t]- Exp[- z*t],1 - Exp[- t]], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [2 / 7] Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Successful [Tested: 1] |
5.9.E16 | \int_{0}^{\infty}\frac{e^{-t}-e^{-zt}}{1-e^{-t}}\diff{t} = \int_{0}^{1}\frac{1-t^{z-1}}{1-t}\diff{t} |
|
int((exp(- t)- exp(- z*t))/(1 - exp(- t)), t = 0..infinity) = int((1 - (t)^(z - 1))/(1 - t), t = 0..1)
|
Integrate[Divide[Exp[- t]- Exp[- z*t],1 - Exp[- t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[1 - (t)^(z - 1),1 - t], {t, 0, 1}, GenerateConditions->None]
|
Failure | Successful | Failed [2 / 7] Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Successful [Tested: 7] |
5.9.E17 | \digamma@{z+1} = -\EulerConstant+\frac{1}{2\pi i}\int_{-c-\infty i}^{-c+\infty i}\frac{\pi z^{-s-1}}{\sin@{\pi s}}\Riemannzeta@{-s}\diff{s} |
|
Psi(z + 1) = - gamma +(1)/(2*Pi*I)*int((Pi*(z)^(- s - 1))/(sin(Pi*s))*Zeta(- s), s = - c - infinity*I..- c + infinity*I)
|
PolyGamma[z + 1] == - EulerGamma +Divide[1,2*Pi*I]*Integrate[Divide[Pi*(z)^(- s - 1),Sin[Pi*s]]*Zeta[- s], {s, - c - Infinity*I, - c + Infinity*I}, GenerateConditions->None]
|
Failure | Failure | Failed [42 / 42] Result: .9666504222+.3394950970*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I}
Result: .3622891065+1.557241225*I
Test Values: {c = -1.5, z = -1/2+1/2*I*3^(1/2)}
Result: .8622891063-.6912158211*I
Test Values: {c = -1.5, z = 1/2-1/2*I*3^(1/2)}
Result: -.1138310784-2.481210069*I
Test Values: {c = -1.5, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Skipped - Because timed out |
5.9.E18 | \EulerConstant = -\int_{0}^{\infty}e^{-t}\ln@@{t}\diff{t} |
|
gamma = - int(exp(- t)*ln(t), t = 0..infinity)
|
EulerGamma == - Integrate[Exp[- t]*Log[t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
5.9.E18 | -\int_{0}^{\infty}e^{-t}\ln@@{t}\diff{t} = \int_{0}^{\infty}\left(\frac{1}{1+t}-e^{-t}\right)\frac{\diff{t}}{t} |
|
- int(exp(- t)*ln(t), t = 0..infinity) = int(((1)/(1 + t)- exp(- t))*(1)/(t), t = 0..infinity)
|
- Integrate[Exp[- t]*Log[t], {t, 0, Infinity}, GenerateConditions->None] == Integrate[(Divide[1,1 + t]- Exp[- t])*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
5.9.E18 | \int_{0}^{\infty}\left(\frac{1}{1+t}-e^{-t}\right)\frac{\diff{t}}{t} = \int_{0}^{1}(1-e^{-t})\frac{\diff{t}}{t}-\int_{1}^{\infty}e^{-t}\frac{\diff{t}}{t} |
|
int(((1)/(1 + t)- exp(- t))*(1)/(t), t = 0..infinity) = int((1 - exp(- t))*(1)/(t), t = 0..1)- int(exp(- t)*(1)/(t), t = 1..infinity)
|
Integrate[(Divide[1,1 + t]- Exp[- t])*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None] == Integrate[(1 - Exp[- t])*Divide[1,t], {t, 0, 1}, GenerateConditions->None]- Integrate[Exp[- t]*Divide[1,t], {t, 1, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
5.9.E18 | \int_{0}^{1}(1-e^{-t})\frac{\diff{t}}{t}-\int_{1}^{\infty}e^{-t}\frac{\diff{t}}{t} = \int_{0}^{\infty}\left(\frac{e^{-t}}{1-e^{-t}}-\frac{e^{-t}}{t}\right)\diff{t} |
|
int((1 - exp(- t))*(1)/(t), t = 0..1)- int(exp(- t)*(1)/(t), t = 1..infinity) = int((exp(- t))/(1 - exp(- t))-(exp(- t))/(t), t = 0..infinity)
|
Integrate[(1 - Exp[- t])*Divide[1,t], {t, 0, 1}, GenerateConditions->None]- Integrate[Exp[- t]*Divide[1,t], {t, 1, Infinity}, GenerateConditions->None] == Integrate[Divide[Exp[- t],1 - Exp[- t]]-Divide[Exp[- t],t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
5.9.E19 | \EulerGamma^{(n)}@{z} = \int_{0}^{\infty}(\ln@@{t})^{n}e^{-t}t^{z-1}\diff{t} |
diff( GAMMA(z), z$(n) ) = int((ln(t))^(n)* exp(- t)*(t)^(z - 1), t = 0..infinity)
|
D[Gamma[z], {z, n}] == Integrate[(Log[t])^(n)* Exp[- t]*(t)^(z - 1), {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Aborted | - | Skipped - Because timed out |