Gamma Function - 5.6 Inequalities

From testwiki
Revision as of 11:12, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.6.E1 1 < ( 2 π ) - 1 / 2 x ( 1 / 2 ) - x e x Γ ( x ) 1 superscript 2 𝜋 1 2 superscript 𝑥 1 2 𝑥 superscript 𝑒 𝑥 Euler-Gamma 𝑥 {\displaystyle{\displaystyle 1<(2\pi)^{-1/2}x^{(1/2)-x}e^{x}\Gamma\left(x% \right)}}
1 < (2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x}
x > 0 𝑥 0 {\displaystyle{\displaystyle\Re x>0}}
1 < (2*Pi)^(- 1/2)* (x)^((1/2)- x)* exp(x)*GAMMA(x)
1 < (2*Pi)^(- 1/2)* (x)^((1/2)- x)* Exp[x]*Gamma[x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E1 ( 2 π ) - 1 / 2 x ( 1 / 2 ) - x e x Γ ( x ) < e 1 / ( 12 x ) superscript 2 𝜋 1 2 superscript 𝑥 1 2 𝑥 superscript 𝑒 𝑥 Euler-Gamma 𝑥 superscript 𝑒 1 12 𝑥 {\displaystyle{\displaystyle(2\pi)^{-1/2}x^{(1/2)-x}e^{x}\Gamma\left(x\right)<% e^{1/(12x)}}}
(2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x} < e^{1/(12x)}
x > 0 𝑥 0 {\displaystyle{\displaystyle\Re x>0}}
(2*Pi)^(- 1/2)* (x)^((1/2)- x)* exp(x)*GAMMA(x) < exp(1/(12*x))
(2*Pi)^(- 1/2)* (x)^((1/2)- x)* Exp[x]*Gamma[x] < Exp[1/(12*x)]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E2 1 Γ ( x ) + 1 Γ ( 1 / x ) 2 1 Euler-Gamma 𝑥 1 Euler-Gamma 1 𝑥 2 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(x\right)}+\frac{1}{\Gamma% \left(1/x\right)}\leq 2}}
\frac{1}{\EulerGamma@{x}}+\frac{1}{\EulerGamma@{1/x}} \leq 2
x > 0 , ( 1 / x ) > 0 formulae-sequence 𝑥 0 1 𝑥 0 {\displaystyle{\displaystyle\Re x>0,\Re(1/x)>0}}
(1)/(GAMMA(x))+(1)/(GAMMA(1/x)) <= 2
Divide[1,Gamma[x]]+Divide[1,Gamma[1/x]] <= 2
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E3 1 ( Γ ( x ) ) 2 + 1 ( Γ ( 1 / x ) ) 2 2 1 superscript Euler-Gamma 𝑥 2 1 superscript Euler-Gamma 1 𝑥 2 2 {\displaystyle{\displaystyle\frac{1}{(\Gamma\left(x\right))^{2}}+\frac{1}{(% \Gamma\left(1/x\right))^{2}}\leq 2}}
\frac{1}{(\EulerGamma@{x})^{2}}+\frac{1}{(\EulerGamma@{1/x})^{2}} \leq 2
x > 0 , ( 1 / x ) > 0 formulae-sequence 𝑥 0 1 𝑥 0 {\displaystyle{\displaystyle\Re x>0,\Re(1/x)>0}}
(1)/((GAMMA(x))^(2))+(1)/((GAMMA(1/x))^(2)) <= 2
Divide[1,(Gamma[x])^(2)]+Divide[1,(Gamma[1/x])^(2)] <= 2
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E4 Γ ( x + 1 ) Γ ( x + s ) < ( x + 1 ) 1 - s Euler-Gamma 𝑥 1 Euler-Gamma 𝑥 𝑠 superscript 𝑥 1 1 𝑠 {\displaystyle{\displaystyle\frac{\Gamma\left(x+1\right)}{\Gamma\left(x+s% \right)}<(x+1)^{1-s}}}
\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} < (x+1)^{1-s}
0 < s , s < 1 , ( x + 1 ) > 0 , ( x + s ) > 0 formulae-sequence 0 𝑠 formulae-sequence 𝑠 1 formulae-sequence 𝑥 1 0 𝑥 𝑠 0 {\displaystyle{\displaystyle 0<s,s<1,\Re(x+1)>0,\Re(x+s)>0}}
(GAMMA(x + 1))/(GAMMA(x + s)) < (x + 1)^(1 - s)
Divide[Gamma[x + 1],Gamma[x + s]] < (x + 1)^(1 - s)
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E5 exp ( ( 1 - s ) ψ ( x + s 1 / 2 ) ) Γ ( x + 1 ) Γ ( x + s ) 1 𝑠 digamma 𝑥 superscript 𝑠 1 2 Euler-Gamma 𝑥 1 Euler-Gamma 𝑥 𝑠 {\displaystyle{\displaystyle\exp\left((1-s)\psi\left(x+s^{1/2}\right)\right)% \leq\frac{\Gamma\left(x+1\right)}{\Gamma\left(x+s\right)}}}
\exp@{(1-s)\digamma@{x+s^{1/2}}} \leq \frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}}
0 < s , s < 1 , ( x + 1 ) > 0 , ( x + s ) > 0 formulae-sequence 0 𝑠 formulae-sequence 𝑠 1 formulae-sequence 𝑥 1 0 𝑥 𝑠 0 {\displaystyle{\displaystyle 0<s,s<1,\Re(x+1)>0,\Re(x+s)>0}}
exp((1 - s)*Psi(x + (s)^(1/2))) <= (GAMMA(x + 1))/(GAMMA(x + s))
Exp[(1 - s)*PolyGamma[x + (s)^(1/2)]] <= Divide[Gamma[x + 1],Gamma[x + s]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E5 Γ ( x + 1 ) Γ ( x + s ) exp ( ( 1 - s ) ψ ( x + 1 2 ( s + 1 ) ) ) Euler-Gamma 𝑥 1 Euler-Gamma 𝑥 𝑠 1 𝑠 digamma 𝑥 1 2 𝑠 1 {\displaystyle{\displaystyle\frac{\Gamma\left(x+1\right)}{\Gamma\left(x+s% \right)}\leq\exp\left((1-s)\psi\left(x+\tfrac{1}{2}(s+1)\right)\right)}}
\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} \leq \exp@{(1-s)\digamma@{x+\tfrac{1}{2}(s+1)}}
0 < s , s < 1 , ( x + 1 ) > 0 , ( x + s ) > 0 formulae-sequence 0 𝑠 formulae-sequence 𝑠 1 formulae-sequence 𝑥 1 0 𝑥 𝑠 0 {\displaystyle{\displaystyle 0<s,s<1,\Re(x+1)>0,\Re(x+s)>0}}
(GAMMA(x + 1))/(GAMMA(x + s)) <= exp((1 - s)*Psi(x +(1)/(2)*(s + 1)))
Divide[Gamma[x + 1],Gamma[x + s]] <= Exp[(1 - s)*PolyGamma[x +Divide[1,2]*(s + 1)]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
5.6.E6 | Γ ( x + i y ) | | Γ ( x ) | Euler-Gamma 𝑥 imaginary-unit 𝑦 Euler-Gamma 𝑥 {\displaystyle{\displaystyle|\Gamma\left(x+\mathrm{i}y\right)|\leq|\Gamma\left% (x\right)|}}
|\EulerGamma@{x+\iunit y}| \leq |\EulerGamma@{x}|
( x + i y ) > 0 , x > 0 formulae-sequence 𝑥 imaginary-unit 𝑦 0 𝑥 0 {\displaystyle{\displaystyle\Re(x+\mathrm{i}y)>0,\Re x>0}}
abs(GAMMA(x + I*y)) <= abs(GAMMA(x))
Abs[Gamma[x + I*y]] <= Abs[Gamma[x]]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
5.6.E7 | Γ ( x + i y ) | ( sech ( π y ) ) 1 / 2 Γ ( x ) Euler-Gamma 𝑥 imaginary-unit 𝑦 superscript 𝜋 𝑦 1 2 Euler-Gamma 𝑥 {\displaystyle{\displaystyle|\Gamma\left(x+\mathrm{i}y\right)|\geq(% \operatorname{sech}\left(\pi y\right))^{1/2}\Gamma\left(x\right)}}
|\EulerGamma@{x+\iunit y}| \geq (\sech@{\pi y})^{1/2}\EulerGamma@{x}
x 1 2 , ( x + i y ) > 0 , x > 0 formulae-sequence 𝑥 1 2 formulae-sequence 𝑥 imaginary-unit 𝑦 0 𝑥 0 {\displaystyle{\displaystyle x\geq\tfrac{1}{2},\Re(x+\mathrm{i}y)>0,\Re x>0}}
abs(GAMMA(x + I*y)) >= (sech(Pi*y))^(1/2)* GAMMA(x)
Abs[Gamma[x + I*y]] >= (Sech[Pi*y])^(1/2)* Gamma[x]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
5.6.E8 | Γ ( z + a ) Γ ( z + b ) | 1 | z | b - a Euler-Gamma 𝑧 𝑎 Euler-Gamma 𝑧 𝑏 1 superscript 𝑧 𝑏 𝑎 {\displaystyle{\displaystyle\left|\frac{\Gamma\left(z+a\right)}{\Gamma\left(z+% b\right)}\right|\leq\frac{1}{|z|^{b-a}}}}
\left|\frac{\EulerGamma@{z+a}}{\EulerGamma@{z+b}}\right| \leq \frac{1}{|z|^{b-a}}
( z + a ) > 0 , ( z + b ) > 0 formulae-sequence 𝑧 𝑎 0 𝑧 𝑏 0 {\displaystyle{\displaystyle\Re(z+a)>0,\Re(z+b)>0}}
abs((GAMMA(z + a))/(GAMMA(z + b))) <= (1)/((abs(z))^(b - a))
Abs[Divide[Gamma[z + a],Gamma[z + b]]] <= Divide[1,(Abs[z])^(b - a)]
Failure Failure
Failed [30 / 83]
Result: .5333333334 <= .1250000000
Test Values: {a = -1.5, b = 1.5, z = 2}

Result: 2.000000000 <= .5000000000
Test Values: {a = -1.5, b = -.5, z = 2}

Result: 1.333333334 <= .2500000000
Test Values: {a = -1.5, b = .5, z = 2}

Result: .2954089752 <= .8838834764e-1
Test Values: {a = -1.5, b = 2, z = 2}

... skip entries to safe data
Failed [35 / 95]
Result: False
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, 2]}

Result: False
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[z, 2]}

... skip entries to safe data
5.6.E9 | Γ ( z ) | ( 2 π ) 1 / 2 | z | x - ( 1 / 2 ) e - π | y | / 2 exp ( 1 6 | z | - 1 ) Euler-Gamma 𝑧 superscript 2 𝜋 1 2 superscript 𝑧 𝑥 1 2 superscript 𝑒 𝜋 𝑦 2 1 6 superscript 𝑧 1 {\displaystyle{\displaystyle|\Gamma\left(z\right)|\leq(2\pi)^{1/2}|z|^{x-(1/2)% }e^{-\pi|y|/2}\exp\left(\tfrac{1}{6}|z|^{-1}\right)}}
|\EulerGamma@{z}| \leq (2\pi)^{1/2}|z|^{x-(1/2)}e^{-\pi|y|/2}\exp@{\tfrac{1}{6}|z|^{-1}}
z > 0 𝑧 0 {\displaystyle{\displaystyle\Re z>0}}
abs(GAMMA(x + y*I)) <= (2*Pi)^(1/2)*(abs(x + y*I))^(x -(1/2))* exp(- Pi*abs(y)/2)*exp((1)/(6)*(abs(x + y*I))^(- 1))
Abs[Gamma[x + y*I]] <= (2*Pi)^(1/2)*(Abs[x + y*I])^(x -(1/2))* Exp[- Pi*Abs[y]/2]*Exp[Divide[1,6]*(Abs[x + y*I])^(- 1)]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]