DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
5.6.E1 |
1 < (2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x} |
|
1 < (2*Pi)^(- 1/2)* (x)^((1/2)- x)* exp(x)*GAMMA(x)
|
1 < (2*Pi)^(- 1/2)* (x)^((1/2)- x)* Exp[x]*Gamma[x]
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E1 |
(2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x} < e^{1/(12x)} |
|
(2*Pi)^(- 1/2)* (x)^((1/2)- x)* exp(x)*GAMMA(x) < exp(1/(12*x))
|
(2*Pi)^(- 1/2)* (x)^((1/2)- x)* Exp[x]*Gamma[x] < Exp[1/(12*x)]
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E2 |
\frac{1}{\EulerGamma@{x}}+\frac{1}{\EulerGamma@{1/x}} \leq 2 |
|
(1)/(GAMMA(x))+(1)/(GAMMA(1/x)) <= 2
|
Divide[1,Gamma[x]]+Divide[1,Gamma[1/x]] <= 2
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E3 |
\frac{1}{(\EulerGamma@{x})^{2}}+\frac{1}{(\EulerGamma@{1/x})^{2}} \leq 2 |
|
(1)/((GAMMA(x))^(2))+(1)/((GAMMA(1/x))^(2)) <= 2
|
Divide[1,(Gamma[x])^(2)]+Divide[1,(Gamma[1/x])^(2)] <= 2
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E4 |
\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} < (x+1)^{1-s} |
|
(GAMMA(x + 1))/(GAMMA(x + s)) < (x + 1)^(1 - s)
|
Divide[Gamma[x + 1],Gamma[x + s]] < (x + 1)^(1 - s)
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E5 |
\exp@{(1-s)\digamma@{x+s^{1/2}}} \leq \frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} |
|
exp((1 - s)*Psi(x + (s)^(1/2))) <= (GAMMA(x + 1))/(GAMMA(x + s))
|
Exp[(1 - s)*PolyGamma[x + (s)^(1/2)]] <= Divide[Gamma[x + 1],Gamma[x + s]]
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E5 |
\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} \leq \exp@{(1-s)\digamma@{x+\tfrac{1}{2}(s+1)}} |
|
(GAMMA(x + 1))/(GAMMA(x + s)) <= exp((1 - s)*Psi(x +(1)/(2)*(s + 1)))
|
Divide[Gamma[x + 1],Gamma[x + s]] <= Exp[(1 - s)*PolyGamma[x +Divide[1,2]*(s + 1)]]
|
Failure |
Failure |
Successful [Tested: 3] |
Successful [Tested: 3]
|
5.6.E6 |
|\EulerGamma@{x+\iunit y}| \leq |\EulerGamma@{x}| |
|
abs(GAMMA(x + I*y)) <= abs(GAMMA(x))
|
Abs[Gamma[x + I*y]] <= Abs[Gamma[x]]
|
Failure |
Failure |
Successful [Tested: 18] |
Successful [Tested: 18]
|
5.6.E7 |
|\EulerGamma@{x+\iunit y}| \geq (\sech@{\pi y})^{1/2}\EulerGamma@{x} |
|
abs(GAMMA(x + I*y)) >= (sech(Pi*y))^(1/2)* GAMMA(x)
|
Abs[Gamma[x + I*y]] >= (Sech[Pi*y])^(1/2)* Gamma[x]
|
Failure |
Failure |
Successful [Tested: 18] |
Successful [Tested: 18]
|
5.6.E8 |
\left|\frac{\EulerGamma@{z+a}}{\EulerGamma@{z+b}}\right| \leq \frac{1}{|z|^{b-a}} |
|
abs((GAMMA(z + a))/(GAMMA(z + b))) <= (1)/((abs(z))^(b - a))
|
Abs[Divide[Gamma[z + a],Gamma[z + b]]] <= Divide[1,(Abs[z])^(b - a)]
|
Failure |
Failure |
Failed [30 / 83] Result: .5333333334 <= .1250000000
Test Values: {a = -1.5, b = 1.5, z = 2}
Result: 2.000000000 <= .5000000000
Test Values: {a = -1.5, b = -.5, z = 2}
Result: 1.333333334 <= .2500000000
Test Values: {a = -1.5, b = .5, z = 2}
Result: .2954089752 <= .8838834764e-1
Test Values: {a = -1.5, b = 2, z = 2}
... skip entries to safe data |
Failed [35 / 95] Result: False
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, 2]}
Result: False
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[z, 2]}
... skip entries to safe data
|
5.6.E9 |
|\EulerGamma@{z}| \leq (2\pi)^{1/2}|z|^{x-(1/2)}e^{-\pi|y|/2}\exp@{\tfrac{1}{6}|z|^{-1}} |
|
abs(GAMMA(x + y*I)) <= (2*Pi)^(1/2)*(abs(x + y*I))^(x -(1/2))* exp(- Pi*abs(y)/2)*exp((1)/(6)*(abs(x + y*I))^(- 1))
|
Abs[Gamma[x + y*I]] <= (2*Pi)^(1/2)*(Abs[x + y*I])^(x -(1/2))* Exp[- Pi*Abs[y]/2]*Exp[Divide[1,6]*(Abs[x + y*I])^(- 1)]
|
Failure |
Failure |
Successful [Tested: 18] |
Successful [Tested: 18]
|