Gamma Function - 5.4 Special Values and Extrema
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
5.4#Ex1 | \EulerGamma@{1} = 1 |
|
GAMMA(1) = 1
|
Gamma[1] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
5.4#Ex2 | n! = \EulerGamma@{n+1} |
factorial(n) = GAMMA(n + 1)
|
(n)! == Gamma[n + 1]
|
Successful | Successful | - | Successful [Tested: 3] | |
5.4.E3 | |\EulerGamma@{iy}| = \left(\frac{\pi}{y\sinh@{\pi y}}\right)^{1/2} |
abs(GAMMA(I*y)) = ((Pi)/(y*sinh(Pi*y)))^(1/2)
|
Abs[Gamma[I*y]] == (Divide[Pi,y*Sinh[Pi*y]])^(1/2)
|
Failure | Failure | Error | Skip - No test values generated | |
5.4.E4 | \EulerGamma@{\tfrac{1}{2}+\iunit y}\EulerGamma@{\tfrac{1}{2}-\iunit y} = \left|\EulerGamma@{\tfrac{1}{2}+\iunit y}\right|^{2} |
GAMMA((1)/(2)+ I*y)*GAMMA((1)/(2)- I*y) = (abs(GAMMA((1)/(2)+ I*y)))^(2)
|
Gamma[Divide[1,2]+ I*y]*Gamma[Divide[1,2]- I*y] == (Abs[Gamma[Divide[1,2]+ I*y]])^(2)
|
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 6] | |
5.4.E4 | \left|\EulerGamma@{\tfrac{1}{2}+\iunit y}\right|^{2} = \frac{\pi}{\cosh@{\pi y}} |
(abs(GAMMA((1)/(2)+ I*y)))^(2) = (Pi)/(cosh(Pi*y))
|
(Abs[Gamma[Divide[1,2]+ I*y]])^(2) == Divide[Pi,Cosh[Pi*y]]
|
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 6] | |
5.4.E5 | \EulerGamma@{\tfrac{1}{4}+\iunit y}\EulerGamma@{\tfrac{3}{4}-\iunit y} = \frac{\pi\sqrt{2}}{\cosh@{\pi y}+\iunit\sinh@{\pi y}} |
GAMMA((1)/(4)+ I*y)*GAMMA((3)/(4)- I*y) = (Pi*sqrt(2))/(cosh(Pi*y)+ I*sinh(Pi*y))
|
Gamma[Divide[1,4]+ I*y]*Gamma[Divide[3,4]- I*y] == Divide[Pi*Sqrt[2],Cosh[Pi*y]+ I*Sinh[Pi*y]]
|
Successful | Successful | - | Successful [Tested: 6] | |
5.4.E6 | \EulerGamma@{\tfrac{1}{2}} = \pi^{1/2}\\ |
|
GAMMA((1)/(2)) = (Pi)^(1/2)
|
Gamma[Divide[1,2]] == (Pi)^(1/2)
|
Successful | Successful | - | Successful [Tested: 1] |
5.4.E6 | \pi^{1/2}\\ = 1.77245\;38509\;05516\;02729\;\dots |
|
(Pi)^(1/2) = 1.77245385090551602729
|
(Pi)^(1/2) == 1.77245385090551602729
|
Successful | Successful | - | Successful [Tested: 1] |
5.4.E7 | \EulerGamma@{\tfrac{1}{3}} = 2.67893\;85347\;07747\;63365\;\dots |
|
GAMMA((1)/(3)) = 2.67893853470774763365
|
Gamma[Divide[1,3]] == 2.67893853470774763365
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
5.4.E8 | \EulerGamma@{\tfrac{2}{3}} = 1.35411\;79394\;26400\;41694\;\dots |
|
GAMMA((2)/(3)) = 1.35411793942640041694
|
Gamma[Divide[2,3]] == 1.35411793942640041694
|
Successful | Successful | - | Successful [Tested: 1] |
5.4.E9 | \EulerGamma@{\tfrac{1}{4}} = 3.62560\;99082\;21908\;31193\;\dots |
|
GAMMA((1)/(4)) = 3.62560990822190831193
|
Gamma[Divide[1,4]] == 3.62560990822190831193
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
5.4.E10 | \EulerGamma@{\tfrac{3}{4}} = 1.22541\;67024\;65177\;64512\;\dots |
|
GAMMA((3)/(4)) = 1.22541670246517764512
|
Gamma[Divide[3,4]] == 1.22541670246517764512
|
Successful | Successful | - | Successful [Tested: 1] |
5.4.E11 | \EulerGamma'@{1} = -\EulerConstant |
|
subs( temp=1, diff( GAMMA(temp), temp$(1) ) ) = - gamma
|
(D[Gamma[temp], {temp, 1}]/.temp-> 1) == - EulerGamma
|
Successful | Successful | - | Successful [Tested: 1] |
5.4#Ex3 | \digamma@{1} = -\EulerConstant |
|
Psi(1) = - gamma
|
PolyGamma[1] == - EulerGamma
|
Successful | Successful | - | Successful [Tested: 1] |
5.4#Ex4 | \digamma'@{1} = \tfrac{1}{6}\pi^{2} |
|
subs( temp=1, diff( Psi(temp), temp$(1) ) ) = (1)/(6)*(Pi)^(2)
|
(D[PolyGamma[temp], {temp, 1}]/.temp-> 1) == Divide[1,6]*(Pi)^(2)
|
Successful | Successful | - | Successful [Tested: 1] |
5.4#Ex5 | \digamma@{\tfrac{1}{2}} = -\EulerConstant-2\ln@@{2} |
|
Psi((1)/(2)) = - gamma - 2*ln(2)
|
PolyGamma[Divide[1,2]] == - EulerGamma - 2*Log[2]
|
Successful | Successful | - | Successful [Tested: 1] |
5.4#Ex6 | \digamma'@{\tfrac{1}{2}} = \tfrac{1}{2}\pi^{2} |
|
subs( temp=(1)/(2), diff( Psi(temp), temp$(1) ) ) = (1)/(2)*(Pi)^(2)
|
(D[PolyGamma[temp], {temp, 1}]/.temp-> Divide[1,2]) == Divide[1,2]*(Pi)^(2)
|
Successful | Successful | - | Successful [Tested: 1] |
5.4.E14 | \digamma@{n+1} = \sum_{k=1}^{n}\frac{1}{k}-\EulerConstant |
|
Psi(n + 1) = sum((1)/(k), k = 1..n)- gamma
|
PolyGamma[n + 1] == Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None]- EulerGamma
|
Successful | Successful | - | Successful [Tested: 3] |
5.4.E16 | \imagpart@@{\digamma@{iy}} = \frac{1}{2y}+\frac{\pi}{2}\coth@{\pi y} |
|
Im(Psi(I*y)) = (1)/(2*y)+(Pi)/(2)*coth(Pi*y)
|
Im[PolyGamma[I*y]] == Divide[1,2*y]+Divide[Pi,2]*Coth[Pi*y]
|
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 6] |
5.4.E17 | \imagpart@@{\digamma@{\tfrac{1}{2}+iy}} = \frac{\pi}{2}\tanh@{\pi y} |
|
Im(Psi((1)/(2)+ I*y)) = (Pi)/(2)*tanh(Pi*y)
|
Im[PolyGamma[Divide[1,2]+ I*y]] == Divide[Pi,2]*Tanh[Pi*y]
|
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 6] |
5.4.E18 | \imagpart@@{\digamma@{1+iy}} = -\frac{1}{2y}+\frac{\pi}{2}\coth@{\pi y} |
|
Im(Psi(1 + I*y)) = -(1)/(2*y)+(Pi)/(2)*coth(Pi*y)
|
Im[PolyGamma[1 + I*y]] == -Divide[1,2*y]+Divide[Pi,2]*Coth[Pi*y]
|
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 6] |
5.4.E19 | \digamma@{\frac{p}{q}} = -\EulerConstant-\ln@@{q}-\frac{\pi}{2}\cot@{\frac{\pi p}{q}}+\frac{1}{2}\sum_{k=1}^{q-1}\cos@{\frac{2\pi kp}{q}}\ln@{2-2\cos@{\frac{2\pi k}{q}}} |
|
Psi((p)/(q)) = - gamma - ln(q)-(Pi)/(2)*cot((Pi*p)/(q))+(1)/(2)*sum(cos((2*Pi*k*p)/(q))*ln(2 - 2*cos((2*Pi*k)/(q))), k = 1..q - 1)
|
PolyGamma[Divide[p,q]] == - EulerGamma - Log[q]-Divide[Pi,2]*Cot[Divide[Pi*p,q]]+Divide[1,2]*Sum[Cos[Divide[2*Pi*k*p,q]]*Log[2 - 2*Cos[Divide[2*Pi*k,q]]], {k, 1, q - 1}, GenerateConditions->None]
|
Failure | Failure | Skipped - Because timed out | Skipped - Because timed out |