Elementary Functions - 4.40 Integrals

From testwiki
Revision as of 12:11, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.40.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\sinh@@{x}\diff{x} = \cosh@@{x}}
\int\sinh@@{x}\diff{x} = \cosh@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(sinh(x), x) = cosh(x)
Integrate[Sinh[x], x, GenerateConditions->None] == Cosh[x]
Successful Successful - Successful [Tested: 3]
4.40.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\cosh@@{x}\diff{x} = \sinh@@{x}}
\int\cosh@@{x}\diff{x} = \sinh@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(cosh(x), x) = sinh(x)
Integrate[Cosh[x], x, GenerateConditions->None] == Sinh[x]
Successful Successful - Successful [Tested: 3]
4.40.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\tanh@@{x}\diff{x} = \ln@{\cosh@@{x}}}
\int\tanh@@{x}\diff{x} = \ln@{\cosh@@{x}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(tanh(x), x) = ln(cosh(x))
Integrate[Tanh[x], x, GenerateConditions->None] == Log[Cosh[x]]
Successful Successful - Successful [Tested: 3]
4.40.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\csch@@{x}\diff{x} = \ln@{\tanh@{\tfrac{1}{2}x}}}
\int\csch@@{x}\diff{x} = \ln@{\tanh@{\tfrac{1}{2}x}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < x, x < \infty}
int(csch(x), x) = ln(tanh((1)/(2)*x))
Integrate[Csch[x], x, GenerateConditions->None] == Log[Tanh[Divide[1,2]*x]]
Successful Successful - Successful [Tested: 3]
4.40.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\sech@@{x}\diff{x} = \Gudermannian@{x}}
\int\sech@@{x}\diff{x} = \Gudermannian@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\infty < x, x < \infty}
int(sech(x), x) = arctan(sinh(x))
Integrate[Sech[x], x, GenerateConditions->None] == Gudermannian[x]
Successful Failure - Successful [Tested: 3]
4.40.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\coth@@{x}\diff{x} = \ln@{\sinh@@{x}}}
\int\coth@@{x}\diff{x} = \ln@{\sinh@@{x}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < x, x < \infty}
int(coth(x), x) = ln(sinh(x))
Integrate[Coth[x], x, GenerateConditions->None] == Log[Sinh[x]]
Successful Successful - Successful [Tested: 3]
4.40.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-x}\frac{\sin@{ax}}{\sinh@@{x}}\diff{x} = \tfrac{1}{2}\pi\coth@{\tfrac{1}{2}\pi a}-\frac{1}{a}}
\int_{0}^{\infty}e^{-x}\frac{\sin@{ax}}{\sinh@@{x}}\diff{x} = \tfrac{1}{2}\pi\coth@{\tfrac{1}{2}\pi a}-\frac{1}{a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a \neq 0}
int(exp(- x)*(sin(a*x))/(sinh(x)), x = 0..infinity) = (1)/(2)*Pi*coth((1)/(2)*Pi*a)-(1)/(a)
Integrate[Exp[- x]*Divide[Sin[a*x],Sinh[x]], {x, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Coth[Divide[1,2]*Pi*a]-Divide[1,a]
Failure Aborted Successful [Tested: 6] Successful [Tested: 6]
4.40.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\sinh@{ax}}{\sinh@{\pi x}}\diff{x} = \tfrac{1}{2}\tan@{\tfrac{1}{2}a}}
\int_{0}^{\infty}\frac{\sinh@{ax}}{\sinh@{\pi x}}\diff{x} = \tfrac{1}{2}\tan@{\tfrac{1}{2}a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi < a, a < \pi}
int((sinh(a*x))/(sinh(Pi*x)), x = 0..infinity) = (1)/(2)*tan((1)/(2)*a)
Integrate[Divide[Sinh[a*x],Sinh[Pi*x]], {x, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Tan[Divide[1,2]*a]
Failure Aborted Successful [Tested: 6] Skipped - Because timed out
4.40.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-\infty}^{\infty}\frac{e^{ax}}{\left(\cosh@{\tfrac{1}{2}x}\right)^{2}}\diff{x} = \frac{4\pi a}{\sin@{\pi a}}}
\int_{-\infty}^{\infty}\frac{e^{ax}}{\left(\cosh@{\tfrac{1}{2}x}\right)^{2}}\diff{x} = \frac{4\pi a}{\sin@{\pi a}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -1 < a, a < 1}
int((exp(a*x))/((cosh((1)/(2)*x))^(2)), x = - infinity..infinity) = (4*Pi*a)/(sin(Pi*a))
Integrate[Divide[Exp[a*x],(Cosh[Divide[1,2]*x])^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Divide[4*Pi*a,Sin[Pi*a]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.40.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\tanh@{ax}-\tanh@{bx}}{x}\diff{x} = \ln@{\frac{a}{b}}}
\int_{0}^{\infty}\frac{\tanh@{ax}-\tanh@{bx}}{x}\diff{x} = \ln@{\frac{a}{b}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a > 0, b > 0}
int((tanh(a*x)- tanh(b*x))/(x), x = 0..infinity) = ln((a)/(b))
Integrate[Divide[Tanh[a*x]- Tanh[b*x],x], {x, 0, Infinity}, GenerateConditions->None] == Log[Divide[a,b]]
Skipped - Unable to analyze test case: Null Skipped - Unable to analyze test case: Null - -
4.40.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\asinh@@{x}\diff{x} = x\asinh@@{x}-(1+x^{2})^{1/2}}
\int\asinh@@{x}\diff{x} = x\asinh@@{x}-(1+x^{2})^{1/2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(arcsinh(x), x) = x*arcsinh(x)-(1 + (x)^(2))^(1/2)
Integrate[ArcSinh[x], x, GenerateConditions->None] == x*ArcSinh[x]-(1 + (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 3]
4.40.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\acosh@@{x}\diff{x} = x\acosh@@{x}-(x^{2}-1)^{1/2}}
\int\acosh@@{x}\diff{x} = x\acosh@@{x}-(x^{2}-1)^{1/2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 < x, x < \infty}
int(arccosh(x), x) = x*arccosh(x)-((x)^(2)- 1)^(1/2)
Integrate[ArcCosh[x], x, GenerateConditions->None] == x*ArcCosh[x]-((x)^(2)- 1)^(1/2)
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.40.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\atanh@@{x}\diff{x} = x\atanh@@{x}+\tfrac{1}{2}\ln@{1-x^{2}}}
\int\atanh@@{x}\diff{x} = x\atanh@@{x}+\tfrac{1}{2}\ln@{1-x^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -1 < x, x < 1}
int(arctanh(x), x) = x*arctanh(x)+(1)/(2)*ln(1 - (x)^(2))
Integrate[ArcTanh[x], x, GenerateConditions->None] == x*ArcTanh[x]+Divide[1,2]*Log[1 - (x)^(2)]
Successful Successful - Successful [Tested: 1]
4.40.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\acsch@@{x}\diff{x} = x\acsch@@{x}+\asinh@@{x}}
\int\acsch@@{x}\diff{x} = x\acsch@@{x}+\asinh@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < x, x < \infty}
int(arccsch(x), x) = x*arccsch(x)+ arcsinh(x)
Integrate[ArcCsch[x], x, GenerateConditions->None] == x*ArcCsch[x]+ ArcSinh[x]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.40.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\asech@@{x}\diff{x} = x\asech@@{x}+\asin@@{x}}
\int\asech@@{x}\diff{x} = x\asech@@{x}+\asin@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < x, x < 1}
int(arcsech(x), x) = x*arcsech(x)+ arcsin(x)
Integrate[ArcSech[x], x, GenerateConditions->None] == x*ArcSech[x]+ ArcSin[x]
Failure Successful
Failed [1 / 1]
Result: -1.570796327
Test Values: {x = .5}

Successful [Tested: 1]
4.40.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\acoth@@{x}\diff{x} = x\acoth@@{x}+\tfrac{1}{2}\ln@{x^{2}-1}}
\int\acoth@@{x}\diff{x} = x\acoth@@{x}+\tfrac{1}{2}\ln@{x^{2}-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 < x, x < \infty}
int(arccoth(x), x) = x*arccoth(x)+(1)/(2)*ln((x)^(2)- 1)
Integrate[ArcCoth[x], x, GenerateConditions->None] == x*ArcCoth[x]+Divide[1,2]*Log[(x)^(2)- 1]
Successful Failure -
Failed [1 / 1]
Result: Complex[0.0, -1.5707963267948966]
Test Values: {Rule[x, Rational[1, 2]]}