Elementary Functions - 4.35 Identities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.35.E1 | \sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v} |
|
sinh(u + v) = sinh(u)*cosh(v)+ cosh(u)*sinh(v)
|
Sinh[u + v] == Sinh[u]*Cosh[v]+ Cosh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E1 | \sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v} |
|
sinh(u - v) = sinh(u)*cosh(v)- cosh(u)*sinh(v)
|
Sinh[u - v] == Sinh[u]*Cosh[v]- Cosh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E2 | \cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v} |
|
cosh(u + v) = cosh(u)*cosh(v)+ sinh(u)*sinh(v)
|
Cosh[u + v] == Cosh[u]*Cosh[v]+ Sinh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E2 | \cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v} |
|
cosh(u - v) = cosh(u)*cosh(v)- sinh(u)*sinh(v)
|
Cosh[u - v] == Cosh[u]*Cosh[v]- Sinh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E3 | \tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}} |
|
tanh(u + v) = (tanh(u)+ tanh(v))/(1 + tanh(u)*tanh(v))
|
Tanh[u + v] == Divide[Tanh[u]+ Tanh[v],1 + Tanh[u]*Tanh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E3 | \tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}} |
|
tanh(u - v) = (tanh(u)- tanh(v))/(1 - tanh(u)*tanh(v))
|
Tanh[u - v] == Divide[Tanh[u]- Tanh[v],1 - Tanh[u]*Tanh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E4 | \coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}} |
|
coth(u + v) = (+ coth(u)*coth(v)+ 1)/(coth(u)+ coth(v))
|
Coth[u + v] == Divide[+ Coth[u]*Coth[v]+ 1,Coth[u]+ Coth[v]]
|
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
Result: Complex[4.333014420201075*^14, -2.3525621062227262*^14]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
4.35.E4 | \coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}} |
|
coth(u - v) = (- coth(u)*coth(v)+ 1)/(coth(u)- coth(v))
|
Coth[u - v] == Divide[- Coth[u]*Coth[v]+ 1,Coth[u]- Coth[v]]
|
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.35.E5 | \sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}} |
|
sinh(u)+ sinh(v) = 2*sinh((u + v)/(2))*cosh((u - v)/(2))
|
Sinh[u]+ Sinh[v] == 2*Sinh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E6 | \sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}} |
|
sinh(u)- sinh(v) = 2*cosh((u + v)/(2))*sinh((u - v)/(2))
|
Sinh[u]- Sinh[v] == 2*Cosh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E7 | \cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}} |
|
cosh(u)+ cosh(v) = 2*cosh((u + v)/(2))*cosh((u - v)/(2))
|
Cosh[u]+ Cosh[v] == 2*Cosh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E8 | \cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}} |
|
cosh(u)- cosh(v) = 2*sinh((u + v)/(2))*sinh((u - v)/(2))
|
Cosh[u]- Cosh[v] == 2*Sinh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E9 | \tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}} |
|
tanh(u)+ tanh(v) = (sinh(u + v))/(cosh(u)*cosh(v))
|
Tanh[u]+ Tanh[v] == Divide[Sinh[u + v],Cosh[u]*Cosh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E9 | \tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}} |
|
tanh(u)- tanh(v) = (sinh(u - v))/(cosh(u)*cosh(v))
|
Tanh[u]- Tanh[v] == Divide[Sinh[u - v],Cosh[u]*Cosh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E10 | \coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}} |
|
coth(u)+ coth(v) = (sinh(v + u))/(sinh(u)*sinh(v))
|
Coth[u]+ Coth[v] == Divide[Sinh[v + u],Sinh[u]*Sinh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E10 | \coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}} |
|
coth(u)- coth(v) = (sinh(v - u))/(sinh(u)*sinh(v))
|
Coth[u]- Coth[v] == Divide[Sinh[v - u],Sinh[u]*Sinh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E11 | \cosh^{2}@@{z}-\sinh^{2}@@{z} = 1 |
|
(cosh(z))^(2)- (sinh(z))^(2) = 1
|
(Cosh[z])^(2)- (Sinh[z])^(2) == 1
|
Successful | Successful | - | Successful [Tested: 7] |
4.35.E12 | \sech^{2}@@{z} = 1-\tanh^{2}@@{z} |
|
(sech(z))^(2) = 1 - (tanh(z))^(2)
|
(Sech[z])^(2) == 1 - (Tanh[z])^(2)
|
Successful | Successful | - | Successful [Tested: 7] |
4.35.E13 | \csch^{2}@@{z} = \coth^{2}@@{z}-1 |
|
(csch(z))^(2) = (coth(z))^(2)- 1
|
(Csch[z])^(2) == (Coth[z])^(2)- 1
|
Successful | Successful | - | Successful [Tested: 7] |
4.35.E14 | 2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v} |
|
2*sinh(u)*sinh(v) = cosh(u + v)- cosh(u - v)
|
2*Sinh[u]*Sinh[v] == Cosh[u + v]- Cosh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E15 | 2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v} |
|
2*cosh(u)*cosh(v) = cosh(u + v)+ cosh(u - v)
|
2*Cosh[u]*Cosh[v] == Cosh[u + v]+ Cosh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E16 | 2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v} |
|
2*sinh(u)*cosh(v) = sinh(u + v)+ sinh(u - v)
|
2*Sinh[u]*Cosh[v] == Sinh[u + v]+ Sinh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E17 | \sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v} |
|
(sinh(u))^(2)- (sinh(v))^(2) = sinh(u + v)*sinh(u - v)
|
(Sinh[u])^(2)- (Sinh[v])^(2) == Sinh[u + v]*Sinh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E18 | \cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v} |
|
(cosh(u))^(2)- (cosh(v))^(2) = sinh(u + v)*sinh(u - v)
|
(Cosh[u])^(2)- (Cosh[v])^(2) == Sinh[u + v]*Sinh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E19 | \sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v} |
|
(sinh(u))^(2)+ (cosh(v))^(2) = cosh(u + v)*cosh(u - v)
|
(Sinh[u])^(2)+ (Cosh[v])^(2) == Cosh[u + v]*Cosh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E20 | \sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2} |
|
sinh((z)/(2)) = ((cosh(z)- 1)/(2))^(1/2)
|
Sinh[Divide[z,2]] == (Divide[Cosh[z]- 1,2])^(1/2)
|
Failure | Failure | Failed [2 / 7] Result: -.4585952894+.8655770340*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -.8655716642-.5419255224*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[-0.4585952893468803, 0.8655770337160631]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.8655716640572735, -0.5419255224573363]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
4.35.E21 | \cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2} |
|
cosh((z)/(2)) = ((cosh(z)+ 1)/(2))^(1/2)
|
Cosh[Divide[z,2]] == (Divide[Cosh[z]+ 1,2])^(1/2)
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.35.E22 | \tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} |
|
tanh((z)/(2)) = ((cosh(z)- 1)/(cosh(z)+ 1))^(1/2)
|
Tanh[Divide[z,2]] == (Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2)
|
Failure | Failure | Failed [2 / 7] Result: -.5869891489+.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -.8595320616-.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[-0.5869891488727425, 0.858086492859854]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.8595320613685857, -0.42117421488499707]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
4.35.E22 | \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}} |
|
((cosh(z)- 1)/(cosh(z)+ 1))^(1/2) = (cosh(z)- 1)/(sinh(z))
|
(Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2) == Divide[Cosh[z]- 1,Sinh[z]]
|
Failure | Failure | Failed [2 / 7] Result: .5869891489-.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: .8595320615+.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[0.5869891488727426, -0.8580864928598539]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.859532061368586, 0.42117421488499684]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.35.E22 | \frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1} |
|
(cosh(z)- 1)/(sinh(z)) = (sinh(z))/(cosh(z)+ 1) |
Divide[Cosh[z]- 1,Sinh[z]] == Divide[Sinh[z],Cosh[z]+ 1] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
4.35.E23 | \sinh@{-z} = -\sinh@@{z} |
|
sinh(- z) = - sinh(z) |
Sinh[- z] == - Sinh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E24 | \cosh@{-z} = \cosh@@{z} |
|
cosh(- z) = cosh(z) |
Cosh[- z] == Cosh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E25 | \tanh@{-z} = -\tanh@@{z} |
|
tanh(- z) = - tanh(z) |
Tanh[- z] == - Tanh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E26 | \sinh@{2z} = 2\sinh@@{z}\cosh@@{z} |
|
sinh(2*z) = 2*sinh(z)*cosh(z) |
Sinh[2*z] == 2*Sinh[z]*Cosh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E26 | 2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}} |
|
2*sinh(z)*cosh(z) = (2*tanh(z))/(1 - (tanh(z))^(2)) |
2*Sinh[z]*Cosh[z] == Divide[2*Tanh[z],1 - (Tanh[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E27 | \cosh@{2z} = 2\cosh^{2}@@{z}-1 |
|
cosh(2*z) = 2*(cosh(z))^(2)- 1 |
Cosh[2*z] == 2*(Cosh[z])^(2)- 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E27 | 2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\ |
|
2*(cosh(z))^(2)- 1 = 2*(sinh(z))^(2)+ 1 |
2*(Cosh[z])^(2)- 1 == 2*(Sinh[z])^(2)+ 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E27 | 2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z} |
|
2*(sinh(z))^(2)+ 1 = (cosh(z))^(2)+ (sinh(z))^(2) |
2*(Sinh[z])^(2)+ 1 == (Cosh[z])^(2)+ (Sinh[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E28 | \tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}} |
|
tanh(2*z) = (2*tanh(z))/(1 + (tanh(z))^(2)) |
Tanh[2*z] == Divide[2*Tanh[z],1 + (Tanh[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E29 | \sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z} |
|
sinh(3*z) = 3*sinh(z)+ 4*(sinh(z))^(3) |
Sinh[3*z] == 3*Sinh[z]+ 4*(Sinh[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E30 | \cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z} |
|
cosh(3*z) = - 3*cosh(z)+ 4*(cosh(z))^(3) |
Cosh[3*z] == - 3*Cosh[z]+ 4*(Cosh[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E31 | \sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z} |
|
sinh(4*z) = 4*(sinh(z))^(3)* cosh(z)+ 4*(cosh(z))^(3)* sinh(z) |
Sinh[4*z] == 4*(Sinh[z])^(3)* Cosh[z]+ 4*(Cosh[z])^(3)* Sinh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E32 | \cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z} |
|
cosh(4*z) = (cosh(z))^(4)+ 6*(sinh(z))^(2)* (cosh(z))^(2)+ (sinh(z))^(4) |
Cosh[4*z] == (Cosh[z])^(4)+ 6*(Sinh[z])^(2)* (Cosh[z])^(2)+ (Sinh[z])^(4) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E33 | \cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n} |
|
cosh(n*z)+ sinh(n*z) = (cosh(z)+ sinh(z))^(n) |
Cosh[n*z]+ Sinh[n*z] == (Cosh[z]+ Sinh[z])^(n) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E33 | \cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n} |
|
cosh(n*z)- sinh(n*z) = (cosh(z)- sinh(z))^(n) |
Cosh[n*z]- Sinh[n*z] == (Cosh[z]- Sinh[z])^(n) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E34 | \sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y} |
|
sinh(x + y*I) = sinh(x)*cos(y)+ I*cosh(x)*sin(y) |
Sinh[x + y*I] == Sinh[x]*Cos[y]+ I*Cosh[x]*Sin[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E35 | \cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y} |
|
cosh(x + y*I) = cosh(x)*cos(y)+ I*sinh(x)*sin(y) |
Cosh[x + y*I] == Cosh[x]*Cos[y]+ I*Sinh[x]*Sin[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E36 | \tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}} |
|
tanh(x + y*I) = (sinh(2*x)+ I*sin(2*y))/(cosh(2*x)+ cos(2*y)) |
Tanh[x + y*I] == Divide[Sinh[2*x]+ I*Sin[2*y],Cosh[2*x]+ Cos[2*y]] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E37 | \coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}} |
|
coth(x + y*I) = (sinh(2*x)- I*sin(2*y))/(cosh(2*x)- cos(2*y)) |
Coth[x + y*I] == Divide[Sinh[2*x]- I*Sin[2*y],Cosh[2*x]- Cos[2*y]] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E38 | |\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} |
|
abs(sinh(x + y*I)) = ((sinh(x))^(2)+ (sin(y))^(2))^(1/2) |
Abs[Sinh[x + y*I]] == ((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.35.E38 | (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2} |
|
((sinh(x))^(2)+ (sin(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)- cos(2*y)))^(1/2) |
((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]- Cos[2*y]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E39 | |\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} |
|
abs(cosh(x + y*I)) = ((sinh(x))^(2)+ (cos(y))^(2))^(1/2) |
Abs[Cosh[x + y*I]] == ((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.35.E39 | (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2} |
|
((sinh(x))^(2)+ (cos(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)+ cos(2*y)))^(1/2) |
((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]+ Cos[2*y]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E40 | |\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2} |
|
abs(tanh(x + y*I)) = ((cosh(2*x)- cos(2*y))/(cosh(2*x)+ cos(2*y)))^(1/2) |
Abs[Tanh[x + y*I]] == (Divide[Cosh[2*x]- Cos[2*y],Cosh[2*x]+ Cos[2*y]])^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |