Elementary Functions - 4.31 Special Values and Limits

From testwiki
Revision as of 11:09, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.31.E1 lim z 0 sinh z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sinh z}{z}=1}}
\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1

limit((sinh(z))/(z), z = 0) = 1
Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E2 lim z 0 tanh z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tanh z}{z}=1}}
\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1

limit((tanh(z))/(z), z = 0) = 1
Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E3 lim z 0 cosh z - 1 z 2 = 1 2 subscript 𝑧 0 𝑧 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\cosh z-1}{z^{2}}=\frac{1}{2}}}
\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}

limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]