Elementary Functions - 4.4 Special Values and Limits
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.4.E1 | \ln@@{1} = 0 |
|
ln(1) = 0
|
Log[1] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E2 | \ln@{-1+\iunit 0} = +\pi\iunit |
|
ln(- 1 + I*0) = + Pi*I
|
Log[- 1 + I*0] == + Pi*I
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |
4.4.E2 | \ln@{-1-\iunit 0} = -\pi\iunit |
|
ln(- 1 - I*0) = - Pi*I
|
Log[- 1 - I*0] == - Pi*I
|
Failure | Failure | Failed [1 / 1] Result: 6.283185308*I
Test Values: {}
|
Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {}
|
4.4.E3 | \ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit |
|
ln(+ I) = +(1)/(2)*Pi*I
|
Log[+ I] == +Divide[1,2]*Pi*I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E3 | \ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit |
|
ln(- I) = -(1)/(2)*Pi*I
|
Log[- I] == -Divide[1,2]*Pi*I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E4 | e^{0} = 1 |
|
exp(0) = 1 |
Exp[0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E5 | e^{+\pi\iunit} = -1 |
|
exp(+ Pi*I) = - 1
|
Exp[+ Pi*I] == - 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E5 | e^{-\pi\iunit} = -1 |
|
exp(- Pi*I) = - 1
|
Exp[- Pi*I] == - 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E6 | e^{+\pi\iunit/2} = +\iunit |
|
exp(+ Pi*I/2) = + I
|
Exp[+ Pi*I/2] == + I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E6 | e^{-\pi\iunit/2} = -\iunit |
|
exp(- Pi*I/2) = - I
|
Exp[- Pi*I/2] == - I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E7 | e^{2\pi k\iunit} = 1 |
|
exp(2*Pi*k*I) = 1
|
Exp[2*Pi*k*I] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E8 | e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2} |
|
exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)
|
Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E8 | e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2} |
|
exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)
|
Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E9 | e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2} |
|
exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)
|
Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E9 | e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2} |
|
exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)
|
Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E10 | e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}} |
|
exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))
|
Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E10 | e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}} |
|
exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))
|
Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E11 | e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}} |
|
exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))
|
Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E11 | e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}} |
|
exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))
|
Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E12 | \iunit^{+\iunit} = e^{-\pi/2} |
|
(I)^(+ I) = exp(- Pi/2)
|
(I)^(+ I) == Exp[- Pi/2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E12 | \iunit^{-\iunit} = e^{+\pi/2} |
|
(I)^(- I) = exp(+ Pi/2)
|
(I)^(- I) == Exp[+ Pi/2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E13 | \lim_{x\to\infty}x^{-a}\ln@@{x} = 0 |
limit((x)^(- a)* ln(x), x = infinity) = 0
|
Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0
|
Successful | Successful | - | Successful [Tested: 3] | |
4.4.E14 | \lim_{x\to 0}x^{a}\ln@@{x} = 0 |
limit((x)^(a)* ln(x), x = 0) = 0
|
Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.4.E15 | \lim_{x\to\infty}x^{a}e^{-x} = 0 |
|
limit((x)^(a)* exp(- x), x = infinity) = 0 |
Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E16 | \lim_{z\to\infty}z^{a}e^{-z} = 0 |
limit((z)^(a)* exp(- z), z = infinity) = 0 |
Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.4.E17 | \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z} |
limit((1 +(z)/(n))^(n), n = infinity) = exp(z) |
Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.4.E18 | \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e |
|
limit((1 +(1)/(n))^(n), n = infinity) = exp(1) |
Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E19 | \lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant |
|
limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma
|
Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E19 | \EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots |
|
gamma = 0.57721566490153286060
|
EulerGamma == 0.57721566490153286060
|
Successful | Successful | - | Successful [Tested: 1] |