Numerical Methods - 3.5 Quadrature
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
3.5.E14 | \int_{0}^{\infty}e^{-pt}\BesselJ{0}@{t}\diff{t} = \frac{1}{\sqrt{p^{2}+1}} |
|
int(exp(- p*t)*BesselJ(0, t), t = 0..infinity) = (1)/(sqrt((p)^(2)+ 1))
|
Integrate[Exp[- p*t]*BesselJ[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[(p)^(2)+ 1]]
|
Successful | Aborted | - | Failed [5 / 10]
Result: Complex[-1.732050807568877, -1.0]
Test Values: {Rule[p, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-1.4678898250138706, 0.39331989319032856]
Test Values: {Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
... skip entries to safe data |
3.5.E16 | w_{k} = \frac{g_{k}}{n}\left(1-\sum_{j=1}^{\floor{n/2}}\frac{b_{j}}{4j^{2}-1}\cos@{2jk\cpi/n}\right) |
|
w[k] = (g[k])/(n)*(1 - sum((b[j])/(4*(j)^(2)- 1)*cos(2*j*k*Pi/n), j = 1..floor(n/2)))
|
Subscript[w, k] == Divide[Subscript[g, k],n]*(1 - Sum[Divide[Subscript[b, j],4*(j)^(2)- 1]*Cos[2*j*k*Pi/n], {j, 1, Floor[n/2]}, GenerateConditions->None])
|
Failure | Failure | Failed [290 / 300] Result: .3496793685+.1056624326*I
Test Values: {b[j] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: .5495724917+.2852208110*I
Test Values: {b[j] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: .5163460354+.3943375674*I
Test Values: {b[j] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 2}
Result: .5495724917+.2852208110*I
Test Values: {b[j] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 3}
... skip entries to safe data |
Skipped - Because timed out |
3.5.E19 | E_{n}(f) = \gamma_{n}f^{(2n)}(\xi)/(2n)! |
(-(b - a)/(180)*(h)^(4)* (f(xi))^(4)) = (int((p[n])^(2)(x)* w(x), x = a..b))*(f(xi))^(2*n)/factorial(2*n) |
(-Divide[b - a,180]*(h)^(4)* (f[\[Xi]])^(4)) == (Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None])*(f[\[Xi]])^(2*n)/(2*n)! |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
3.5#Ex1 | [a,b] = [-1,1] |
|
[a , b] = [- 1 , 1] |
[a , b] == [- 1 , 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex2 | w(x) = 1 |
|
w(x) = 1 |
w[x] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex3 | \gamma_{n} = \frac{2^{2n+1}}{2n+1}\,\frac{(n!)^{4}}{((2n)!)^{2}} |
|
(int((p[n])^(2)(x)* w(x), x = a..b)) = ((2)^(2*n + 1))/(2*n + 1)*((factorial(n))^(4))/((factorial(2*n))^(2)) |
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == Divide[(2)^(2*n + 1),2*n + 1]*Divide[((n)!)^(4),((2*n)!)^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex4 | [a,b] = [-1,1] |
|
[a , b] = [- 1 , 1] |
[a , b] == [- 1 , 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex5 | w(x) = (1-x^{2})^{-1/2} |
|
w(x) = (1 - (x)^(2))^(- 1/2) |
w[x] == (1 - (x)^(2))^(- 1/2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex6 | \gamma_{n} = \frac{\cpi}{2^{2n-1}} |
|
(int((p[n])^(2)(x)* w(x), x = a..b)) = (Pi)/((2)^(2*n - 1))
|
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == Divide[Pi,(2)^(2*n - 1)]
|
Failure | Failure | Failed [300 / 300] Result: -1.570796327
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: -.3926990818
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 2}
Result: -.9817477044e-1
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 3}
Result: -1.570796327
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = -1/2+1/2*I*3^(1/2), n = 1}
... skip entries to safe data |
Failed [300 / 300]
Result: -1.5707963267948966
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: -0.39269908169872414
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex7 | x_{k} = \cos@{\frac{2k-1}{2n}\cpi} |
|
x[k] = cos((2*k - 1)/(2*n)*Pi)
|
Subscript[x, k] == Cos[Divide[2*k - 1,2*n]*Pi]
|
Failure | Failure | Failed [90 / 90] Result: .8660254042+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: .1589186229+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: .2e-9+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: .8660254034+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 1}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.15891862259789125, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex8 | w_{k} = \frac{\cpi}{n} |
w[k] = (Pi)/(n)
|
Subscript[w, k] == Divide[Pi,n]
|
Failure | Failure | Failed [30 / 30] Result: -2.275567250+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: -.7047709230+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: -.1811721470+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: -3.641592654+.8660254040*I
Test Values: {w[k] = -1/2+1/2*I*3^(1/2), k = 1, n = 1}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[-2.2755672498053543, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.7047709230104579, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
3.5#Ex9 | x_{k} = \cos@{\frac{k}{n+1}\cpi} |
|
x[k] = cos((k)/(n + 1)*Pi)
|
Subscript[x, k] == Cos[Divide[k,n + 1]*Pi]
|
Failure | Failure | Failed [88 / 90] Result: .8660254042+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: .3660254038+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: .1589186229+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: 1.866025404+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 1}
... skip entries to safe data |
Failed [88 / 90]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.3660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex10 | w_{k} = \frac{\cpi}{n+1}\sin^{2}@{\frac{k}{n+1}\cpi} |
|
w[k] = (Pi)/(n + 1)*(sin((k)/(n + 1)*Pi))^(2)
|
Subscript[w, k] == Divide[Pi,n + 1]*(Sin[Divide[k,n + 1]*Pi])^(2)
|
Failure | Failure | Failed [90 / 90] Result: -.7047709230+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: .806272408e-1+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: .4733263222+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: .8660254040+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 1}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[-0.7047709230104579, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.08062724038699043, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex11 | \gamma_{n} = \frac{\cpi}{2^{2n+1}} |
(int((p[n])^(2)(x)* w(x), x = a..b)) = (Pi)/((2)^(2*n + 1))
|
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == Divide[Pi,(2)^(2*n + 1)]
|
Failure | Failure | Failed [300 / 300] Result: -.3926990818
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: -.9817477044e-1
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 2}
Result: -.2454369261e-1
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 3}
Result: -.3926990818
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = -1/2+1/2*I*3^(1/2), n = 1}
... skip entries to safe data |
Failed [300 / 300]
Result: -0.39269908169872414
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: -0.09817477042468103
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
3.5#Ex12 | x_{k} = +\cos@{\frac{2k}{2n+1}\cpi} |
|
x[k] = + cos((2*k)/(2*n + 1)*Pi)
|
Subscript[x, k] == + Cos[Divide[2*k,2*n + 1]*Pi]
|
Failure | Failure | Failed [88 / 90] Result: 1.366025404+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: .5570084102+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: .2425356024+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: 1.366025403+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 1}
... skip entries to safe data |
Failed [88 / 90]
Result: Complex[1.3660254037844388, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.5570084094094913, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex12 | x_{k} = -\cos@{\frac{2k}{2n+1}\cpi} |
|
x[k] = - cos((2*k)/(2*n + 1)*Pi)
|
Subscript[x, k] == - Cos[Divide[2*k,2*n + 1]*Pi]
|
Failure | Failure | Failed [88 / 90] Result: .3660254043+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: 1.175042398+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: 1.489515206+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: .3660254051+.5000000000*I
Test Values: {x[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 1}
... skip entries to safe data |
Failed [88 / 90]
Result: Complex[0.3660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.1750423981593863, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[x, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex13 | w_{k} = \frac{4\cpi}{2n+1}\sin^{2}@{\frac{k}{2n+1}\cpi} |
|
w[k] = (4*Pi)/(2*n + 1)*(sin((k)/(2*n + 1)*Pi))^(2)
|
Subscript[w, k] == Divide[4*Pi,2*n + 1]*(Sin[Divide[k,2*n + 1]*Pi])^(2)
|
Failure | Failure | Failed [90 / 90] Result: -2.275567250+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}
Result: -.22894503e-2+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}
Result: .5280706399+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 3}
Result: -2.275567248+.5000000000*I
Test Values: {w[k] = 1/2*3^(1/2)+1/2*I, k = 2, n = 1}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[-2.2755672498053543, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.0022894499063851326, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
3.5#Ex14 | \gamma_{n} = \frac{\cpi}{2^{2n}} |
|
(int((p[n])^(2)(x)* w(x), x = a..b)) = (Pi)/((2)^(2*n)) |
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == Divide[Pi,(2)^(2*n)] |
Failure | Failure | Failed [300 / 300] Result: -.7853981635
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 1, alpha = 1/2, beta = -1/2} Result: -.1963495409
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 2, alpha = 1/2, beta = -1/2} Result: -.4908738522e-1
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 3, alpha = 1/2, beta = -1/2} Result: -.7853981635
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = -1/2+1/2*I*3^(1/2), n = 1, alpha = 1/2, beta = -1/2} ... skip entries to safe data |
Failed [300 / 300]
Result: -0.7853981633974483
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, Rational[1, 2]], Rule[β, Rational[-1, 2]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -0.19634954084936207
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, Rational[1, 2]], Rule[β, Rational[-1, 2]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
3.5#Ex15 | [a,b] = [-1,1] |
|
[a , b] = [- 1 , 1] |
[a , b] == [- 1 , 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex16 | w(x) = (1-x)^{\alpha}(1+x)^{\beta} |
|
w(x) = (1 - x)^(alpha)*(1 + x)^(beta) |
w[x] == (1 - x)^\[Alpha]*(1 + x)^\[Beta] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex17 | \gamma_{n} = \dfrac{\EulerGamma@{n+\alpha+1}\EulerGamma@{n+\beta+1}\EulerGamma@{n+\alpha+\beta+1}}{(2n+\alpha+\beta+1)(\EulerGamma@{2n+\alpha+\beta+1})^{2}}2^{2n+\alpha+\beta+1}n! |
(int((p[n])^(2)(x)* w(x), x = a..b)) = (GAMMA(n + alpha + 1)*GAMMA(n + beta + 1)*GAMMA(n + alpha + beta + 1))/((2*n + alpha + beta + 1)*(GAMMA(2*n + alpha + beta + 1))^(2))*(2)^(2*n + alpha + beta + 1)* factorial(n) |
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == Divide[Gamma[n + \[Alpha]+ 1]*Gamma[n + \[Beta]+ 1]*Gamma[n + \[Alpha]+ \[Beta]+ 1],(2*n + \[Alpha]+ \[Beta]+ 1)*(Gamma[2*n + \[Alpha]+ \[Beta]+ 1])^(2)]*(2)^(2*n + \[Alpha]+ \[Beta]+ 1)* (n)! |
Failure | Failure | Failed [300 / 300] Result: -.1963495408
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, beta = 1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 1} Result: -.4090615438e-1
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, beta = 1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 2} Result: -.9203884728e-2
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, beta = 1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 3} Result: -.1963495408
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, beta = 1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = -1/2+1/2*I*3^(1/2), n = 1} ... skip entries to safe data |
Skipped - Because timed out | |
3.5#Ex19 | w(x) = x^{\alpha}e^{-x} |
|
w(x) = (x)^(alpha)* exp(- x) |
w[x] == (x)^\[Alpha]* Exp[- x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex20 | \gamma_{n} = n!\,\EulerGamma@{n+\alpha+1} |
(int((p[n])^(2)(x)* w(x), x = a..b)) = factorial(n)*GAMMA(n + alpha + 1) |
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == (n)!*Gamma[n + \[Alpha]+ 1] |
Failure | Failure | Failed [300 / 300] Result: -3.323350970
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 1} Result: -23.26345680
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 2} Result: -314.0566667
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 3} Result: -3.323350970
Test Values: {a = -1.5, alpha = 1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = -1/2+1/2*I*3^(1/2), n = 1} ... skip entries to safe data |
Failed [300 / 300]
Result: -3.3233509704478426
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -23.2634567931349
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
3.5#Ex21 | (a,b) = (-\infty,\infty) |
|
(a , b) = (- infinity , infinity) |
(a , b) == (- Infinity , Infinity) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex22 | w(x) = e^{-x^{2}} |
|
w(x) = exp(- (x)^(2)) |
w[x] == Exp[- (x)^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex23 | \gamma_{n} = \sqrt{\cpi}\,\frac{n!}{2^{n}} |
|
(int((p[n])^(2)(x)* w(x), x = a..b)) = sqrt(Pi)*(factorial(n))/((2)^(n)) |
(Integrate[(Subscript[p, n])^(2)[x]* w[x], {x, a, b}, GenerateConditions->None]) == Sqrt[Pi]*Divide[(n)!,(2)^(n)] |
Failure | Failure | Failed [300 / 300] Result: -.8862269255
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 1} Result: -.8862269255
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 2} Result: -1.329340388
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = 1/2*3^(1/2)+1/2*I, n = 3} Result: -.8862269255
Test Values: {a = -1.5, b = -1.5, w = 1/2*3^(1/2)+1/2*I, p[n] = -1/2+1/2*I*3^(1/2), n = 1} ... skip entries to safe data |
Failed [300 / 300]
Result: -0.8862269254527579
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -0.8862269254527579
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
3.5#Ex24 | [a,b] = [0,1] |
|
[a , b] = [0 , 1] |
[a , b] == [0 , 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5#Ex25 | w(x) = \ln@{1/x} |
|
w(x) = ln(1/x) |
w[x] == Log[1/x] |
Failure | Failure | Failed [30 / 30] Result: 1.704503214+.7500000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, x = 1.5} Result: -.2601344786+.2500000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, x = .5} Result: 2.425197989+1.*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, x = 2} Result: -.3445348919+1.299038106*I
Test Values: {w = -1/2+1/2*I*3^(1/2), x = 1.5} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[1.7045032137848224, 0.7499999999999999]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]} Result: Complex[-0.26013447866772593, 0.24999999999999997]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]} ... skip entries to safe data |
3.5.E30 | p_{k+1}(x) = (x-\alpha_{k})p_{k}(x)-\beta_{k}p_{k-1}(x) |
|
p[k + 1](x) = (x - alpha[k])*p[k](x)- beta[k]*p[k - 1](x) |
Subscript[p, k + 1][x] == (x - Subscript[\[Alpha], k])*Subscript[p, k][x]- Subscript[\[Beta], k]*Subscript[p, k - 1][x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
3.5.E32 | w_{k} = \beta_{0}v_{k,1}^{2} |
w[k] = beta[0]*(v[k , 1])^(2) |
Subscript[w, k] == Subscript[\[Beta], 0]*(Subscript[v, k , 1])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
3.5.E37 | \int_{c-\iunit\infty}^{c+\iunit\infty}e^{\zeta}\zeta^{-s}p_{k}(1/\zeta)p_{\ell}(1/\zeta)\diff{\zeta} = 0 |
int(exp(zeta)*(zeta)^(- s)* p[k]*(1/zeta)*p[ell]*(1/zeta), zeta = c - I*infinity..c + I*infinity) = 0 |
Integrate[Exp[\[Zeta]]*\[Zeta]^(- s)* Subscript[p, k]*(1/\[Zeta])*Subscript[p, \[ScriptL]]*(1/\[Zeta]), {\[Zeta], c - I*Infinity, c + I*Infinity}, GenerateConditions->None] == 0 |
Successful | Aborted | - | Failed [300 / 300]
Result: Complex[-3.0699801238394655, 1.7724538509055168]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[Subscript[p, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-3.0699801238394655, 1.7724538509055168]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[s, -1.5], Rule[Subscript[p, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
3.5.E42 | \erfc@@{\lambda} = \frac{1}{2\cpi\iunit}\int_{c-\iunit\infty}^{c+\iunit\infty}e^{\zeta-2\lambda\sqrt{\zeta}}\frac{\diff{\zeta}}{\zeta} |
erfc(lambda) = (1)/(2*Pi*I)*int(exp(zeta - 2*lambda*sqrt(zeta))*(1)/(zeta), zeta = c - I*infinity..c + I*infinity) |
Erfc[\[Lambda]] == Divide[1,2*Pi*I]*Integrate[Exp[\[Zeta]- 2*\[Lambda]*Sqrt[\[Zeta]]]*Divide[1,\[Zeta]], {\[Zeta], c - I*Infinity, c + I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Failed [30 / 30] Result: .9788588170e-1-.2531649186*I
Test Values: {c = 1.5, lambda = 1/2*3^(1/2)+1/2*I} Result: 1.977726380-.8570608782*I
Test Values: {c = 1.5, lambda = -1/2+1/2*I*3^(1/2)} Result: .2227361984e-1+.8570608782*I
Test Values: {c = 1.5, lambda = 1/2-1/2*I*3^(1/2)} Result: 1.902114118+.2531649186*I
Test Values: {c = 1.5, lambda = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Skipped - Because timed out | |
3.5.E44 | \erfc@@{\lambda} = \frac{1}{2\cpi\iunit}\int_{c-\iunit\infty}^{c+\iunit\infty}e^{\lambda^{2}(t-2\sqrt{t})}\frac{\diff{t}}{t} |
erfc(lambda) = (1)/(2*Pi*I)*int(exp((lambda)^(2)*(t - 2*sqrt(t)))*(1)/(t), t = c - I*infinity..c + I*infinity) |
Erfc[\[Lambda]] == Divide[1,2*Pi*I]*Integrate[Exp[\[Lambda]^(2)*(t - 2*Sqrt[t])]*Divide[1,t], {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Failed [30 / 30] Result: .9788588170e-1-.2531649186*I
Test Values: {c = 1.5, lambda = 1/2*3^(1/2)+1/2*I} Result: 1.977726380-.8570608782*I
Test Values: {c = 1.5, lambda = -1/2+1/2*I*3^(1/2)} Result: .2227361984e-1+.8570608782*I
Test Values: {c = 1.5, lambda = 1/2-1/2*I*3^(1/2)} Result: 1.902114118+.2531649186*I
Test Values: {c = 1.5, lambda = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Skipped - Because timed out | |
3.5.E45 | \erfc@@{\lambda} = \frac{e^{-\lambda^{2}}}{2\cpi}\int_{-\cpi}^{\cpi}e^{-\lambda^{2}\tan^{2}@{\frac{1}{2}\theta}}\diff{\theta} |
|
erfc(lambda) = (exp(- (lambda)^(2)))/(2*Pi)*int(exp(- (lambda)^(2)* (tan((1)/(2)*theta))^(2)), theta = - Pi..Pi) |
Erfc[\[Lambda]] == Divide[Exp[- \[Lambda]^(2)],2*Pi]*Integrate[Exp[- \[Lambda]^(2)* (Tan[Divide[1,2]*\[Theta]])^(2)], {\[Theta], - Pi, Pi}, GenerateConditions->None] |
Failure | Failure | Failed [6 / 10] Result: Float(infinity)+Float(infinity)*I
Test Values: {lambda = -1/2+1/2*I*3^(1/2)} Result: Float(infinity)+Float(infinity)*I
Test Values: {lambda = 1/2-1/2*I*3^(1/2)} Result: 1.804228236+.5063298371*I
Test Values: {lambda = -1/2*3^(1/2)-1/2*I} Result: 1.932210292
Test Values: {lambda = -1.5} ... skip entries to safe data |
Failed [5 / 10]
Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {Rule[λ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.80422823640912, 0.5063298374329107]
Test Values: {Rule[λ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |