Numerical Methods - 3.2 Linear Algebra

From testwiki
Revision as of 11:02, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
3.2.E1 𝐀𝐱 = 𝐛 𝐀𝐱 𝐛 {\displaystyle{\displaystyle\mathbf{A}\mathbf{x}=\mathbf{b}}}
\mathbf{A}\mathbf{x} = \mathbf{b}

A*x = b
A*x == b
Skipped - no semantic math Skipped - no semantic math - -
3.2.E5 𝐀 = 𝐋𝐔 𝐀 𝐋𝐔 {\displaystyle{\displaystyle\mathbf{A}=\mathbf{L}\mathbf{U}}}
\mathbf{A} = \mathbf{L}\mathbf{U}

A = L*U
A == L*U
Skipped - no semantic math Skipped - no semantic math - -
3.2.E11 y j = f j - β„“ j ⁒ y j - 1 subscript 𝑦 𝑗 subscript 𝑓 𝑗 subscript β„“ 𝑗 subscript 𝑦 𝑗 1 {\displaystyle{\displaystyle y_{j}=f_{j}-\ell_{j}y_{j-1}}}
y_{j} = f_{j}-\ell_{j}y_{j-1}

y[j] = f[j]- ell[j]*y[j - 1]
Subscript[y, j] == Subscript[f, j]- Subscript[\[ScriptL], j]*Subscript[y, j - 1]
Skipped - no semantic math Skipped - no semantic math - -
3.2.E12 x j = ( y j - u j ⁒ x j + 1 ) / d j subscript π‘₯ 𝑗 subscript 𝑦 𝑗 subscript 𝑒 𝑗 subscript π‘₯ 𝑗 1 subscript 𝑑 𝑗 {\displaystyle{\displaystyle x_{j}=(y_{j}-u_{j}x_{j+1})/d_{j}}}
x_{j} = (y_{j}-u_{j}x_{j+1})/d_{j}
j = n - 1 𝑗 𝑛 1 {\displaystyle{\displaystyle j=n-1}}
x[j] = (y[j]- u[j]*x[j + 1])/(b[j]- ell[j]*c[j - 1])
Subscript[x, j] == (Subscript[y, j]- Subscript[u, j]*Subscript[x, j + 1])/(Subscript[b, j]- Subscript[\[ScriptL], j]*Subscript[c, j - 1])
Skipped - no semantic math Skipped - no semantic math - -
3.2#Ex3 βˆ₯ 𝐱 βˆ₯ p = ( βˆ‘ j = 1 n | x j | p ) 1 / p subscript norm 𝐱 𝑝 superscript superscript subscript 𝑗 1 𝑛 subscript π‘₯ 𝑗 𝑝 1 𝑝 {\displaystyle{\displaystyle\|\mathbf{x}\|_{p}=\left(\sum_{j=1}^{n}{\left|x_{j% }\right|^{p}}\right)^{1/p}}}
\|\mathbf{x}\|_{p} = \left(\sum_{j=1}^{n}\abs{x_{j}}^{p}\right)^{1/p}

Error
Subscript[Norm[x], p] == ((Sum[(Abs[Subscript[x, j]])^(p), {j, 1, n}, GenerateConditions->None]))^(1/p)
Failure Failure Error
Failed [300 / 300]
Result: Plus[-1.0, Subscript[1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {Rule[n, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[Subscript[x, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-1.7142646344505674, 0.6191072997114272], Subscript[1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {Rule[n, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[Subscript[x, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
3.2.E17 βˆ₯ 𝐱 * - 𝐱 βˆ₯ p βˆ₯ 𝐱 βˆ₯ p ≀ ΞΊ ⁒ ( 𝐀 ) ⁒ βˆ₯ 𝐫 βˆ₯ p βˆ₯ 𝐛 βˆ₯ p subscript norm superscript 𝐱 𝐱 𝑝 subscript norm 𝐱 𝑝 πœ… 𝐀 subscript norm 𝐫 𝑝 subscript norm 𝐛 𝑝 {\displaystyle{\displaystyle\frac{\|\mathbf{x}^{*}-\mathbf{x}\|_{p}}{\|\mathbf% {x}\|_{p}}\leq\kappa(\mathbf{A})\frac{\|\mathbf{r}\|_{p}}{\|\mathbf{b}\|_{p}}}}
\frac{\|\mathbf{x}^{*}-\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}} \leq \kappa(\mathbf{A})\frac{\|\mathbf{r}\|_{p}}{\|\mathbf{b}\|_{p}}

Error
Divide[Subscript[Norm[(x)^(*)- x], p],Subscript[Norm[x], p]] <= (Subscript[Norm[A], p]*Subscript[Norm[(A)^(- 1)], p])*Divide[Subscript[Norm[r], p],Subscript[Norm[b], p]]
Skipped - no semantic math Skipped - no semantic math - -
3.2.E18 𝐀𝐱 = Ξ» ⁒ 𝐱 𝐀𝐱 πœ† 𝐱 {\displaystyle{\displaystyle\mathbf{A}\mathbf{x}=\lambda\mathbf{x}}}
\mathbf{A}\mathbf{x} = \lambda\mathbf{x}

A*x = lambda*x
A*x == \[Lambda]*x
Skipped - no semantic math Skipped - no semantic math - -