Asymptotic Approximations - 2.3 Integrals of a Real Variable
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 2.3#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{0} = \frac{q_{0}}{\mu p_{0}^{\lambda/\mu}}} b_{0} = \frac{q_{0}}{\mu p_{0}^{\lambda/\mu}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | b[0] = (q[0])/(mu*(p[0])^(lambda/mu)) | Subscript[b, 0] == Divide[Subscript[q, 0],\[Mu]*(Subscript[p, 0])^(\[Lambda]/\[Mu])] | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{1} = \left(\frac{q_{1}}{\mu}-\frac{(\lambda+1)p_{1}q_{0}}{\mu^{2}p_{0}}\right)\frac{1}{p_{0}^{(\lambda+1)/\mu}}} b_{1} = \left(\frac{q_{1}}{\mu}-\frac{(\lambda+1)p_{1}q_{0}}{\mu^{2}p_{0}}\right)\frac{1}{p_{0}^{(\lambda+1)/\mu}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | b[1] = ((q[1])/(mu)-((lambda + 1)*p[1]*q[0])/((mu)^(2)* p[0]))*(1)/((p[0])^((lambda + 1)/mu)) | Subscript[b, 1] == (Divide[Subscript[q, 1],\[Mu]]-Divide[(\[Lambda]+ 1)*Subscript[p, 1]*Subscript[q, 0],\[Mu]^(2)* Subscript[p, 0]])*Divide[1,(Subscript[p, 0])^((\[Lambda]+ 1)/\[Mu])] | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{2} = \left(\frac{q_{2}}{\mu}-\frac{(\lambda+2)(p_{1}q_{1}+p_{2}q_{0})}{\mu^{2}p_{0}}+\frac{(\lambda+2)(\lambda+\mu+2)p_{1}^{2}q_{0}}{2\mu^{3}p_{0}^{2}}\right)\frac{1}{p_{0}^{(\lambda+2)/\mu}}} b_{2} = \left(\frac{q_{2}}{\mu}-\frac{(\lambda+2)(p_{1}q_{1}+p_{2}q_{0})}{\mu^{2}p_{0}}+\frac{(\lambda+2)(\lambda+\mu+2)p_{1}^{2}q_{0}}{2\mu^{3}p_{0}^{2}}\right)\frac{1}{p_{0}^{(\lambda+2)/\mu}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | b[2] = ((q[2])/(mu)-((lambda + 2)*(p[1]*q[1]+ p[2]*q[0]))/((mu)^(2)* p[0])+((lambda + 2)*(lambda + mu + 2)*(p[1])^(2)*q[0])/(2*(mu)^(3)* (p[0])^(2)))*(1)/((p[0])^((lambda + 2)/mu)) | Subscript[b, 2] == (Divide[Subscript[q, 2],\[Mu]]-Divide[(\[Lambda]+ 2)*(Subscript[p, 1]*Subscript[q, 1]+ Subscript[p, 2]*Subscript[q, 0]),\[Mu]^(2)* Subscript[p, 0]]+Divide[(\[Lambda]+ 2)*(\[Lambda]+ \[Mu]+ 2)*(Subscript[p, 1])^(2)*Subscript[q, 0],2*\[Mu]^(3)* (Subscript[p, 0])^(2)])*Divide[1,(Subscript[p, 0])^((\[Lambda]+ 2)/\[Mu])] | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{s} = \frac{1}{\mu}\Residue_{t=a}\left[\frac{q(t)}{(p(t)-p(a))^{(\lambda+s)/\mu}}\right]} b_{s} = \frac{1}{\mu}\Residue_{t=a}\left[\frac{q(t)}{(p(t)-p(a))^{(\lambda+s)/\mu}}\right] | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | b[s] = (1)/(mu)*[t = a]*((q(t))/((p(t)- p(a))^((lambda + s)/mu))) | Subscript[b, s] == Divide[1,\[Mu]]*Subscript[, t == a]*(Divide[q[t],(p[t]- p[a])^((\[Lambda]+ s)/\[Mu])]) | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3.E25 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(\alpha,t) = \tfrac{1}{2}w^{2}-aw+b} p(\alpha,t) = \tfrac{1}{2}w^{2}-aw+b | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | p(alpha , t) = (1)/(2)*(w)^(2)- a*w + b | p[\[Alpha], t] == Divide[1,2]*(w)^(2)- a*w + b | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a = (2p(\alpha,0)-2p(\alpha,\alpha))^{1/2}} a = (2p(\alpha,0)-2p(\alpha,\alpha))^{1/2} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | a = (2*p(alpha , 0)- 2*p(alpha , alpha))^(1/2) | a == (2*p[\[Alpha], 0]- 2*p[\[Alpha], \[Alpha]])^(1/2) | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b = p(\alpha,0)} b = p(\alpha,0) | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | b = p(alpha , 0) | b == p[\[Alpha], 0] | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3.E27 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = (2p(\alpha,0)-2p(\alpha,\alpha))^{1/2}+(2p(\alpha,t)-2p(\alpha,\alpha))^{1/2}} w = (2p(\alpha,0)-2p(\alpha,\alpha))^{1/2}+(2p(\alpha,t)-2p(\alpha,\alpha))^{1/2} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | w = (2*p(alpha , 0)- 2*p(alpha , alpha))^(1/2)+(2*p(alpha , t)- 2*p(alpha , alpha))^(1/2) | w == (2*p[\[Alpha], 0]- 2*p[\[Alpha], \[Alpha]])^(1/2)+(2*p[\[Alpha], t]- 2*p[\[Alpha], \[Alpha]])^(1/2) | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 2.3.E28 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{w}{t} = +\frac{1}{(2p(\alpha,t)-2p(\alpha,\alpha))^{1/2}}\pderiv{p(\alpha,t)}{t}} \deriv{w}{t} = +\frac{1}{(2p(\alpha,t)-2p(\alpha,\alpha))^{1/2}}\pderiv{p(\alpha,t)}{t} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | diff(w, t) = +(1)/((2*p(alpha , t)- 2*p(alpha , alpha))^(1/2))*diff(p(alpha , t), t)
 | D[w, t] == +Divide[1,(2*p[\[Alpha], t]- 2*p[\[Alpha], \[Alpha]])^(1/2)]*D[p[\[Alpha], t], t]
 | Error | Failure | - | Error | 
| 2.3.E28 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{w}{t} = -\frac{1}{(2p(\alpha,t)-2p(\alpha,\alpha))^{1/2}}\pderiv{p(\alpha,t)}{t}} \deriv{w}{t} = -\frac{1}{(2p(\alpha,t)-2p(\alpha,\alpha))^{1/2}}\pderiv{p(\alpha,t)}{t} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | diff(w, t) = -(1)/((2*p(alpha , t)- 2*p(alpha , alpha))^(1/2))*diff(p(alpha , t), t)
 | D[w, t] == -Divide[1,(2*p[\[Alpha], t]- 2*p[\[Alpha], \[Alpha]])^(1/2)]*D[p[\[Alpha], t], t]
 | Error | Failure | - | Error |