Algebraic and Analytic Methods - 1.16 Distributions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
1.16.E1 | \Lambda(\alpha_{1}\phi_{1}+\alpha_{2}\phi_{2}) = \alpha_{1}\Lambda(\phi_{1})+\alpha_{2}\Lambda(\phi_{2}) |
|
Lambda(alpha[1]*phi[1]+ alpha[2]*phi[2]) = alpha[1]*Lambda(phi[1])+ alpha[2]*Lambda(phi[2]) |
\[CapitalLambda][Subscript[\[Alpha], 1]*Subscript[\[Phi], 1]+ Subscript[\[Alpha], 2]*Subscript[\[Phi], 2]] == Subscript[\[Alpha], 1]*\[CapitalLambda][Subscript[\[Phi], 1]]+ Subscript[\[Alpha], 2]*\[CapitalLambda][Subscript[\[Phi], 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E2 | \lim_{n\to\infty}\Lambda(\phi_{n}) = \Lambda(\phi) |
|
limit(Lambda(phi[n]), n = infinity) = Lambda(phi) |
Limit[\[CapitalLambda][Subscript[\[Phi], n]], n -> Infinity, GenerateConditions->None] == \[CapitalLambda][\[Phi]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E17 | \sigma_{n} = f^{(n)}(x_{0}+)-f^{(n)}(x_{0}-) |
|
sigma[n] = (f)^(n)*(x[0]+)- (f)^(n)*(x[0]-) |
Subscript[\[Sigma], n] == (f)^(n)*(Subscript[x, 0]+)- (f)^(n)*(Subscript[x, 0]-) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E19 | x^{\alpha}_{+} = x^{\alpha}\HeavisideH@{x} |
|
(x[+])^(alpha) = (x)^(alpha)* Heaviside(x)
|
(Subscript[x, +])^\[Alpha] == (x)^\[Alpha]* HeavisideTheta[x]
|
Error | Failure | - | Error |
1.16.E20 | Dx^{\alpha}_{+} = \alpha x_{+}^{\alpha-1} |
|
D*(x[+])^(alpha) = alpha*(x[+])^(alpha - 1) |
D*(Subscript[x, +])^\[Alpha] == \[Alpha]*(Subscript[x, +])^(\[Alpha]- 1) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E21 | x^{\alpha}_{+} = \frac{1}{(\alpha+1)_{n}}D^{n}x_{+}^{\alpha+n} |
|
(x[+])^(alpha) = (1)/(alpha + 1[n])*(D)^(n)* (x[+])^(alpha + n) |
(Subscript[x, +])^\[Alpha] == Divide[1,Subscript[\[Alpha]+ 1, n]]*(D)^(n)* (Subscript[x, +])^(\[Alpha]+ n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E22 | \ln_{+}x = \HeavisideH@{x}\ln@@{x} |
|
$0[+]ln()*x = Heaviside(x)*ln(x)
|
Subscript[$0, +]Log[]*x == HeavisideTheta[x]*Log[x]
|
Translation Error | Translation Error | - | - |
1.16.E23 | (-1)^{n}n!x_{+}^{-1-n} = D^{(n+1)}\ln_{+}x |
|
(- 1)^(n)* factorial(n)*(x[+])^(- 1 - n) = (D)^(n + 1)* [+]ln()*x |
(- 1)^(n)* (n)!*(Subscript[x, +])^(- 1 - n) == Subscript[(D)^(n + 1)* , +]Log[]*x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E24 | |x^{N}\phi_{n}^{(k)}| \leq c_{k,N} |
|
abs((x)^(N)* (phi[n])^(k)) <= c[k , N] |
Abs[(x)^(N)* (Subscript[\[Phi], n])^(k)] <= Subscript[c, k , N] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E28 | |x^{m}\phi^{(k)}(x)| \leq c_{m,k} |
|
abs((x)^(m)* (phi(x)*)^(k)) <= c[m , k] |
Abs[(x)^(m)* (\[Phi][x]*)^(k)] <= Subscript[c, m , k] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16#Ex2 | D_{\boldsymbol{{\alpha}}} = \iunit^{-|\boldsymbol{{\alpha}}|}D^{\boldsymbol{{\alpha}}} |
|
D[alpha] = (I)^(-abs(alpha))* (D)^(alpha)
|
Subscript[D, \[Alpha]] == (I)^(-Abs[\[Alpha]])* (D)^\[Alpha]
|
Failure | Failure | Failed [300 / 300] Result: .8660254041+1.500000000*I
Test Values: {D = 1/2*3^(1/2)+1/2*I, alpha = 1.5, D[alpha] = 1/2*3^(1/2)+1/2*I}
Result: -.4999999999+1.866025404*I
Test Values: {D = 1/2*3^(1/2)+1/2*I, alpha = 1.5, D[alpha] = -1/2+1/2*I*3^(1/2)}
Result: .5000000001+.1339745960*I
Test Values: {D = 1/2*3^(1/2)+1/2*I, alpha = 1.5, D[alpha] = 1/2-1/2*I*3^(1/2)}
Result: -.8660254039+.5000000000*I
Test Values: {D = 1/2*3^(1/2)+1/2*I, alpha = 1.5, D[alpha] = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.8660254037844387, 1.5]
Test Values: {Rule[D, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[D, α], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.4999999999999998, 1.8660254037844388]
Test Values: {Rule[D, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[D, α], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.16.E31 | P(\mathbf{x}) = \sum_{\boldsymbol{{\alpha}}}c_{\boldsymbol{{\alpha}}}\mathbf{x}^{\boldsymbol{{\alpha}}} |
|
P(x) = sum(c[alpha]*(x)^(alpha), $0[alpha]*c[alpha]*(x)^(alpha) = - infinity..infinity) |
P[x] == Sum[Subscript[c, \[Alpha]]*(x)^\[Alpha], {Subscript[$0, \[Alpha]]*Subscript[c, \[Alpha]]*(x)^\[Alpha], - Infinity, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16#Ex3 | P(D) = \sum_{\boldsymbol{{\alpha}}}c_{\boldsymbol{{\alpha}}}D_{\boldsymbol{{\alpha}}} |
|
P(D) = sum(c[alpha]*D[alpha], $0[alpha]*c[alpha]*D[alpha] = - infinity..infinity) |
P[D] == Sum[Subscript[c, \[Alpha]]*Subscript[D, \[Alpha]], {Subscript[$0, \[Alpha]]*Subscript[c, \[Alpha]]*Subscript[D, \[Alpha]], - Infinity, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16#Ex7 | \mathcal{F}(P(D)u) = P(-\mathbf{x})\mathcal{F}(u) |
|
F(P(D)* u) = P(- x)* F(u) |
F[P[D]* u] == P[- x]* F[u] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16#Ex8 | \mathcal{F}(Pu) = P(D)\mathcal{F}(u) |
|
F(P*u) = P(D)* F(u) |
F[P*u] == P[D]* F[u] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.16.E40 | \int^{\infty}_{-\infty}\Diracdelta@{t}\expe^{\iunit xt}\diff{t} = 1 |
|
int(Dirac(t)*exp(I*x*t), t = - infinity..infinity) = 1
|
Integrate[DiracDelta[t]*Exp[I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 3] |
1.16.E43 | \frac{1}{2\cpi}\int^{\infty}_{-\infty}\expe^{\iunit xt}\diff{t} = \Diracdelta@{x} |
|
(1)/(2*Pi)*int(exp(I*x*t), t = - infinity..infinity) = Dirac(x)
|
Divide[1,2*Pi]*Integrate[Exp[I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None] == DiracDelta[x]
|
Successful | Failure | - | Failed [3 / 3]
Result: Complex[-0.07099199156997928, 3.003857199159988*^-16]
Test Values: {Rule[x, 1.5]}
Result: Complex[0.07742603591272186, 0.30312240144001046]
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
1.16.E44 | \sign@{x} = 2\HeavisideH@{x}-1 |
signum(x) = 2*Heaviside(x)- 1
|
Sign[x] == 2*HeavisideTheta[x]- 1
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |