Elementary Functions - 4.32 Inequalities

From testwiki
Revision as of 16:37, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.32.E1 cosh x ( sinh x x ) 3 𝑥 superscript 𝑥 𝑥 3 {\displaystyle{\displaystyle\cosh x\leq\left(\frac{\sinh x}{x}\right)^{3}}}
\cosh@@{x} \leq \left(\frac{\sinh@@{x}}{x}\right)^{3}

cosh(x) <= ((sinh(x))/(x))^(3)
Cosh[x] <= (Divide[Sinh[x],x])^(3)
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.32.E2 sin x cos x < tanh x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\sin x\cos x<\tanh x}}
\sin@@{x}\cos@@{x} < \tanh@@{x}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
sin(x)*cos(x) < tanh(x)
Sin[x]*Cos[x] < Tanh[x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.32.E2 tanh x < x 𝑥 𝑥 {\displaystyle{\displaystyle\tanh x<x}}
\tanh@@{x} < x
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
tanh(x) < x
Tanh[x] < x
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.32.E3 | cosh x - cosh y | | x - y | sinh x sinh y 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 {\displaystyle{\displaystyle|\cosh x-\cosh y|\geq|x-y|\sqrt{\sinh x\sinh y}}}
|\cosh@@{x}-\cosh@@{y}| \geq |x-y|\sqrt{\sinh@@{x}\sinh@@{y}}
x > 0 , y > 0 formulae-sequence 𝑥 0 𝑦 0 {\displaystyle{\displaystyle x>0,y>0}}
abs(cosh(x)- cosh(y)) >= abs(x - y)*sqrt(sinh(x)*sinh(y))
Abs[Cosh[x]- Cosh[y]] >= Abs[x - y]*Sqrt[Sinh[x]*Sinh[y]]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
4.32.E4 arctan x 1 2 π tanh x 𝑥 1 2 𝜋 𝑥 {\displaystyle{\displaystyle\operatorname{arctan}x\leq\tfrac{1}{2}\pi\tanh x}}
\atan@@{x} \leq \tfrac{1}{2}\pi\tanh@@{x}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
arctan(x) <= (1)/(2)*Pi*tanh(x)
ArcTan[x] <= Divide[1,2]*Pi*Tanh[x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]