DLMF:18.12.E14 (Q5656)

From testwiki
Revision as of 14:33, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.12.E14
No description defined

    Statements

    Γ ( α + 1 ) ( x z ) - 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n . Euler-Gamma 𝛼 1 superscript 𝑥 𝑧 1 2 𝛼 superscript 𝑒 𝑧 Bessel-J 𝛼 2 𝑥 𝑧 superscript subscript 𝑛 0 Laguerre-polynomial-L 𝛼 𝑛 𝑥 Pochhammer 𝛼 1 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\Gamma\left(\alpha+1\right)(xz)^{-\frac{1}{2}% \alpha}e^{z}J_{\alpha}\left(2\sqrt{xz}\right)=\sum_{n=0}^{\infty}\frac{L^{(% \alpha)}_{n}\left(x\right)}{{\left(\alpha+1\right)_{n}}}z^{n}.}}
    0 references
    0 references
    J ν ( z ) Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle J_{\NVar{\nu}}\left(\NVar{z}\right)}}
    C10.S2.E2.m2acdec
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2abdec
    0 references
    L n ( α ) ( x ) Laguerre-polynomial-L 𝛼 𝑛 𝑥 {\displaystyle{\displaystyle L^{(\NVar{\alpha})}_{\NVar{n}}\left(\NVar{x}% \right)}}
    C18.S3.T1.t1.r12.m2aadec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1acdec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2abdec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C18.S1.XMD2.m1mdec
    0 references