Results of Hypergeometric Function II

From testwiki
Revision as of 13:09, 22 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.10.E1 z ( 1 - z ) d 2 w d z 2 + ( c - ( a + b + 1 ) z ) d w d z - a b w = 0 𝑧 1 𝑧 derivative 𝑤 𝑧 2 𝑐 𝑎 𝑏 1 𝑧 derivative 𝑤 𝑧 𝑎 𝑏 𝑤 0 {\displaystyle{\displaystyle z(1-z)\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}% +\left(c-(a+b+1)z\right)\frac{\mathrm{d}w}{\mathrm{d}z}-abw=0}}
z(1-z)\deriv[2]{w}{z}+\left(c-(a+b+1)z\right)\deriv{w}{z}-abw = 0

z*(1 - z)*diff(w, [z$(2)])+(c -(a + b + 1)*z)*diff(w, z)- a*b*w = 0
z*(1 - z)*D[w, {z, 2}]+(c -(a + b + 1)*z)*D[w, z]- a*b*w == 0
Failure Failure
Failed [300 / 300]
Result: -1.948557159-1.125000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.948557159-1.125000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.9742785792574935, -0.5624999999999999]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[w, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.9742785792574935, -0.5624999999999999]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[w, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10#Ex1 f 1 ( z ) = F ( a , b c ; z ) subscript 𝑓 1 𝑧 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle f_{1}(z)=F\left({a,b\atop c};z\right)}}
f_{1}(z) = \hyperF@@{a}{b}{c}{z}

f[1](z) = hypergeom([a, b], [c], z)
Subscript[f, 1][z] == Hypergeometric2F1[a, b, c, z]
Failure Failure
Failed [300 / 300]
Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I}

Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10#Ex2 f 2 ( z ) = z 1 - c F ( a - c + 1 , b - c + 1 2 - c ; z ) subscript 𝑓 2 𝑧 superscript 𝑧 1 𝑐 Gauss-hypergeometric-F 𝑎 𝑐 1 𝑏 𝑐 1 2 𝑐 𝑧 {\displaystyle{\displaystyle f_{2}(z)=z^{1-c}F\left({a-c+1,b-c+1\atop 2-c};z% \right)}}
f_{2}(z) = z^{1-c}\hyperF@@{a-c+1}{b-c+1}{2-c}{z}

f[2](z) = (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [2 - c], z)
Subscript[f, 2][z] == (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z]
Failure Failure
Failed [300 / 300]
Result: .5133103946-.4212876140*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I}

Result: -.8527150098-.7873130176*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.09179462722314002, 0.01730691357980338]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.24971172372296968, -0.07419943736630628]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E3 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( 1 - c ) z - c ( 1 - z ) c - a - b - 1 Wronskian subscript 𝑓 1 𝑧 subscript 𝑓 2 𝑧 1 𝑐 superscript 𝑧 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 1 {\displaystyle{\displaystyle\mathscr{W}\left\{f_{1}(z),f_{2}(z)\right\}=(1-c)z% ^{-c}(1-z)^{c-a-b-1}}}
\Wronskian@{f_{1}(z),f_{2}(z)} = (1-c)z^{-c}(1-z)^{c-a-b-1}

(f[1](z))*diff(f[2](z), z)-diff(f[1](z), z)*(f[2](z)) = (1 - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
Wronskian[{Subscript[f, 1][z], Subscript[f, 2][z]}, z] == (1 - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
Translation Error Translation Error - -
15.10#Ex3 f 1 ( z ) = F ( a , b a + b + 1 - c ; 1 - z ) subscript 𝑓 1 𝑧 Gauss-hypergeometric-F 𝑎 𝑏 𝑎 𝑏 1 𝑐 1 𝑧 {\displaystyle{\displaystyle f_{1}(z)=F\left({a,b\atop a+b+1-c};1-z\right)}}
f_{1}(z) = \hyperF@@{a}{b}{a+b+1-c}{1-z}

f[1](z) = hypergeom([a, b], [a + b + 1 - c], 1 - z)
Subscript[f, 1][z] == Hypergeometric2F1[a, b, a + b + 1 - c, 1 - z]
Failure Failure
Failed [300 / 300]
Result: -.1636283687-1.527783493*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I}

Result: -1.529653773-1.893808897*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.9719632229411412, -1.2440609802148728]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.6304568719950316, -1.3355673311609824]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10#Ex4 f 2 ( z ) = ( 1 - z ) c - a - b F ( c - a , c - b c - a - b + 1 ; 1 - z ) subscript 𝑓 2 𝑧 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 𝑐 𝑎 𝑐 𝑏 𝑐 𝑎 𝑏 1 1 𝑧 {\displaystyle{\displaystyle f_{2}(z)=(1-z)^{c-a-b}F\left({c-a,c-b\atop c-a-b+% 1};1-z\right)}}
f_{2}(z) = (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c-a-b+1}{1-z}

f[2](z) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)
Subscript[f, 2][z] == (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z]
Failure Failure
Failed [300 / 300]
Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I}

Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E5 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( a + b - c ) z - c ( 1 - z ) c - a - b - 1 Wronskian subscript 𝑓 1 𝑧 subscript 𝑓 2 𝑧 𝑎 𝑏 𝑐 superscript 𝑧 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 1 {\displaystyle{\displaystyle\mathscr{W}\left\{f_{1}(z),f_{2}(z)\right\}=(a+b-c% )z^{-c}(1-z)^{c-a-b-1}}}
\Wronskian@{f_{1}(z),f_{2}(z)} = (a+b-c)z^{-c}(1-z)^{c-a-b-1}

(f[1](z))*diff(f[2](z), z)-diff(f[1](z), z)*(f[2](z)) = (a + b - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
Wronskian[{Subscript[f, 1][z], Subscript[f, 2][z]}, z] == (a + b - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
Translation Error Translation Error - -
15.10#Ex5 f 1 ( z ) = z - a F ( a , a - c + 1 a - b + 1 ; 1 z ) subscript 𝑓 1 𝑧 superscript 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑎 𝑐 1 𝑎 𝑏 1 1 𝑧 {\displaystyle{\displaystyle f_{1}(z)=z^{-a}F\left({a,a-c+1\atop a-b+1};\frac{% 1}{z}\right)}}
f_{1}(z) = z^{-a}\hyperF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}}

f[1](z) = (z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))
Subscript[f, 1][z] == (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]]
Failure Failure
Failed [299 / 300]
Result: .8440762415+.7235043582*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I}

Result: -.5219491629+.3574789546*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [299 / 300]
Result: Complex[0.40957915386936583, 0.6126719591711881]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.0680728029232561, 0.5211656082250784]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10#Ex6 f 2 ( z ) = z - b F ( b , b - c + 1 b - a + 1 ; 1 z ) subscript 𝑓 2 𝑧 superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑏 𝑎 1 1 𝑧 {\displaystyle{\displaystyle f_{2}(z)=z^{-b}F\left({b,b-c+1\atop b-a+1};\frac{% 1}{z}\right)}}
f_{2}(z) = z^{-b}\hyperF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}}

f[2](z) = (z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))
Subscript[f, 2][z] == (z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]]
Failure Failure
Failed [299 / 300]
Result: .8440762415+.7235043582*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I}

Result: -.5219491629+.3574789546*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [299 / 300]
Result: Complex[0.40957915386936583, 0.6126719591711881]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.0680728029232561, 0.5211656082250784]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E7 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( a - b ) z - c ( z - 1 ) c - a - b - 1 Wronskian subscript 𝑓 1 𝑧 subscript 𝑓 2 𝑧 𝑎 𝑏 superscript 𝑧 𝑐 superscript 𝑧 1 𝑐 𝑎 𝑏 1 {\displaystyle{\displaystyle\mathscr{W}\left\{f_{1}(z),f_{2}(z)\right\}=(a-b)z% ^{-c}(z-1)^{c-a-b-1}}}
\Wronskian@{f_{1}(z),f_{2}(z)} = (a-b)z^{-c}(z-1)^{c-a-b-1}

(f[1](z))*diff(f[2](z), z)-diff(f[1](z), z)*(f[2](z)) = (a - b)*(z)^(- c)*(z - 1)^(c - a - b - 1)
Wronskian[{Subscript[f, 1][z], Subscript[f, 2][z]}, z] == (a - b)*(z)^(- c)*(z - 1)^(c - a - b - 1)
Translation Error Translation Error - -
15.10.E11 w 1 ( z ) = F ( a , b c ; z ) subscript 𝑤 1 𝑧 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle w_{1}(z)=F\left({a,b\atop c};z\right)}}
w_{1}(z) = \hyperF@@{a}{b}{c}{z}

w[1](z) = hypergeom([a, b], [c], z)
Subscript[w, 1][z] == Hypergeometric2F1[a, b, c, z]
Failure Failure
Failed [300 / 300]
Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[1] = 1/2*3^(1/2)+1/2*I}

Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E11 F ( a , b c ; z ) = ( 1 - z ) c - a - b F ( c - a , c - b c ; z ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 𝑐 𝑎 𝑐 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left({a,b\atop c};z\right)=(1-z)^{c-a-b}F\left(% {c-a,c-b\atop c};z\right)}}
\hyperF@@{a}{b}{c}{z} = (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c}{z}

hypergeom([a, b], [c], z) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z)
Hypergeometric2F1[a, b, c, z] == (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c, z]
Failure Successful Skipped - Because timed out
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.10.E11 ( 1 - z ) c - a - b F ( c - a , c - b c ; z ) = ( 1 - z ) - a F ( a , c - b c ; z z - 1 ) superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 𝑐 𝑎 𝑐 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑐 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle(1-z)^{c-a-b}F\left({c-a,c-b\atop c};z\right)=(1-z% )^{-a}F\left({a,c-b\atop c};\frac{z}{z-1}\right)}}
(1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c}{z} = (1-z)^{-a}\hyperF@@{a}{c-b}{c}{\frac{z}{z-1}}

(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z) = (1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))
(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c, z] == (1 - z)^(- a)* Hypergeometric2F1[a, c - b, c, Divide[z,z - 1]]
Failure Failure Skipped - Because timed out
Failed [83 / 300]
Result: Complex[6.853625654927462, -2.5179782304346476*^-15]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 1.5]}

Result: Complex[8.642795715636197, -2.185751579730777*^-15]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 2]}

... skip entries to safe data
15.10.E11 ( 1 - z ) - a F ( a , c - b c ; z z - 1 ) = ( 1 - z ) - b F ( c - a , b c ; z z - 1 ) superscript 1 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑐 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑏 Gauss-hypergeometric-F 𝑐 𝑎 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle(1-z)^{-a}F\left({a,c-b\atop c};\frac{z}{z-1}% \right)=(1-z)^{-b}F\left({c-a,b\atop c};\frac{z}{z-1}\right)}}
(1-z)^{-a}\hyperF@@{a}{c-b}{c}{\frac{z}{z-1}} = (1-z)^{-b}\hyperF@@{c-a}{b}{c}{\frac{z}{z-1}}

(1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1)) = (1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))
(1 - z)^(- a)* Hypergeometric2F1[a, c - b, c, Divide[z,z - 1]] == (1 - z)^(- b)* Hypergeometric2F1[c - a, b, c, Divide[z,z - 1]]
Failure Failure
Failed [69 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [69 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E12 w 2 ( z ) = z 1 - c F ( a - c + 1 , b - c + 1 2 - c ; z ) subscript 𝑤 2 𝑧 superscript 𝑧 1 𝑐 Gauss-hypergeometric-F 𝑎 𝑐 1 𝑏 𝑐 1 2 𝑐 𝑧 {\displaystyle{\displaystyle w_{2}(z)={z^{1-c}}F\left({a-c+1,b-c+1\atop 2-c};z% \right)}}
w_{2}(z) = {z^{1-c}}\hyperF@@{a-c+1}{b-c+1}{2-c}{z}

w[2](z) = (z)^(1 - c)*hypergeom([a - c + 1, b - c + 1], [2 - c], z)
Subscript[w, 2][z] == (z)^(1 - c)*Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z]
Failure Failure Manual Skip!
Failed [300 / 300]
Result: Complex[0.09179462722314002, 0.01730691357980338]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.24971172372296968, -0.07419943736630628]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E12 z 1 - c F ( a - c + 1 , b - c + 1 2 - c ; z ) = z 1 - c ( 1 - z ) c - a - b F ( 1 - a , 1 - b 2 - c ; z ) superscript 𝑧 1 𝑐 Gauss-hypergeometric-F 𝑎 𝑐 1 𝑏 𝑐 1 2 𝑐 𝑧 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 1 𝑏 2 𝑐 𝑧 {\displaystyle{\displaystyle{z^{1-c}}F\left({a-c+1,b-c+1\atop 2-c};z\right)={z% ^{1-c}(1-z)^{c-a-b}}\*F\left({1-a,1-b\atop 2-c};z\right)}}
{z^{1-c}}\hyperF@@{a-c+1}{b-c+1}{2-c}{z} = {z^{1-c}(1-z)^{c-a-b}}\*\hyperF@@{1-a}{1-b}{2-c}{z}

(z)^(1 - c)*hypergeom([a - c + 1, b - c + 1], [2 - c], z) = (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [2 - c], z)
(z)^(1 - c)*Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z] == (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, 2 - c, z]
Failure Successful Manual Skip!
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.10.E12 z 1 - c ( 1 - z ) c - a - b F ( 1 - a , 1 - b 2 - c ; z ) = z 1 - c ( 1 - z ) c - a - 1 F ( a - c + 1 , 1 - b 2 - c ; z z - 1 ) superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 1 𝑏 2 𝑐 𝑧 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 1 Gauss-hypergeometric-F 𝑎 𝑐 1 1 𝑏 2 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle{z^{1-c}(1-z)^{c-a-b}}\*F\left({1-a,1-b\atop 2-c};% z\right)={z^{1-c}(1-z)^{c-a-1}}\*F\left({a-c+1,1-b\atop 2-c};\frac{z}{z-1}% \right)}}
{z^{1-c}(1-z)^{c-a-b}}\*\hyperF@@{1-a}{1-b}{2-c}{z} = {z^{1-c}(1-z)^{c-a-1}}\*\hyperF@@{a-c+1}{1-b}{2-c}{\frac{z}{z-1}}

(z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [2 - c], z) = (z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([a - c + 1, 1 - b], [2 - c], (z)/(z - 1))
(z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, 2 - c, z] == (z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[a - c + 1, 1 - b, 2 - c, Divide[z,z - 1]]
Failure Failure Manual Skip!
Failed [74 / 300]
Result: Complex[8.881784197001252*^-16, -5.5536036726979585]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, 1.5]}

Result: Complex[1.7763568394002505*^-15, -15.707963267948971]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, 2]}

... skip entries to safe data
15.10.E12 z 1 - c ( 1 - z ) c - a - 1 F ( a - c + 1 , 1 - b 2 - c ; z z - 1 ) = z 1 - c ( 1 - z ) c - b - 1 F ( 1 - a , b - c + 1 2 - c ; z z - 1 ) superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 1 Gauss-hypergeometric-F 𝑎 𝑐 1 1 𝑏 2 𝑐 𝑧 𝑧 1 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑏 1 Gauss-hypergeometric-F 1 𝑎 𝑏 𝑐 1 2 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle{z^{1-c}(1-z)^{c-a-1}}\*F\left({a-c+1,1-b\atop 2-c% };\frac{z}{z-1}\right)={z^{1-c}(1-z)^{c-b-1}}\*F\left({1-a,b-c+1\atop 2-c};% \frac{z}{z-1}\right)}}
{z^{1-c}(1-z)^{c-a-1}}\*\hyperF@@{a-c+1}{1-b}{2-c}{\frac{z}{z-1}} = {z^{1-c}(1-z)^{c-b-1}}\*\hyperF@@{1-a}{b-c+1}{2-c}{\frac{z}{z-1}}

(z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([a - c + 1, 1 - b], [2 - c], (z)/(z - 1)) = (z)^(1 - c)*(1 - z)^(c - b - 1)* hypergeom([1 - a, b - c + 1], [2 - c], (z)/(z - 1))
(z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[a - c + 1, 1 - b, 2 - c, Divide[z,z - 1]] == (z)^(1 - c)*(1 - z)^(c - b - 1)* Hypergeometric2F1[1 - a, b - c + 1, 2 - c, Divide[z,z - 1]]
Failure Failure Manual Skip!
Failed [69 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E13 w 3 ( z ) = F ( a , b a + b - c + 1 ; 1 - z ) subscript 𝑤 3 𝑧 Gauss-hypergeometric-F 𝑎 𝑏 𝑎 𝑏 𝑐 1 1 𝑧 {\displaystyle{\displaystyle w_{3}(z)=F\left({a,b\atop a+b-c+1};1-z\right)}}
w_{3}(z) = \hyperF@@{a}{b}{a+b-c+1}{1-z}

w[3](z) = hypergeom([a, b], [a + b - c + 1], 1 - z)
Subscript[w, 3][z] == Hypergeometric2F1[a, b, a + b - c + 1, 1 - z]
Failure Failure
Failed [300 / 300]
Result: -.1636283687-1.527783493*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[3] = 1/2*3^(1/2)+1/2*I}

Result: -1.529653773-1.893808897*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[3] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.9719632229411412, -1.2440609802148728]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.6304568719950316, -1.3355673311609824]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E13 F ( a , b a + b - c + 1 ; 1 - z ) = z 1 - c F ( a - c + 1 , b - c + 1 a + b - c + 1 ; 1 - z ) Gauss-hypergeometric-F 𝑎 𝑏 𝑎 𝑏 𝑐 1 1 𝑧 superscript 𝑧 1 𝑐 Gauss-hypergeometric-F 𝑎 𝑐 1 𝑏 𝑐 1 𝑎 𝑏 𝑐 1 1 𝑧 {\displaystyle{\displaystyle F\left({a,b\atop a+b-c+1};1-z\right)=z^{1-c}F% \left({a-c+1,b-c+1\atop a+b-c+1};1-z\right)}}
\hyperF@@{a}{b}{a+b-c+1}{1-z} = z^{1-c}\hyperF@@{a-c+1}{b-c+1}{a+b-c+1}{1-z}

hypergeom([a, b], [a + b - c + 1], 1 - z) = (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [a + b - c + 1], 1 - z)
Hypergeometric2F1[a, b, a + b - c + 1, 1 - z] == (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, a + b - c + 1, 1 - z]
Failure Successful Skipped - Because timed out
Failed [70 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.10.E13 z 1 - c F ( a - c + 1 , b - c + 1 a + b - c + 1 ; 1 - z ) = z - a F ( a , a - c + 1 a + b - c + 1 ; 1 - 1 z ) superscript 𝑧 1 𝑐 Gauss-hypergeometric-F 𝑎 𝑐 1 𝑏 𝑐 1 𝑎 𝑏 𝑐 1 1 𝑧 superscript 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑎 𝑐 1 𝑎 𝑏 𝑐 1 1 1 𝑧 {\displaystyle{\displaystyle z^{1-c}F\left({a-c+1,b-c+1\atop a+b-c+1};1-z% \right)=z^{-a}F\left({a,a-c+1\atop a+b-c+1};1-\frac{1}{z}\right)}}
z^{1-c}\hyperF@@{a-c+1}{b-c+1}{a+b-c+1}{1-z} = z^{-a}\hyperF@@{a}{a-c+1}{a+b-c+1}{1-\frac{1}{z}}

(z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [a + b - c + 1], 1 - z) = (z)^(- a)* hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z))
(z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, a + b - c + 1, 1 - z] == (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]]
Failure Failure
Failed [56 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [57 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E13 z - a F ( a , a - c + 1 a + b - c + 1 ; 1 - 1 z ) = z - b F ( b , b - c + 1 a + b - c + 1 ; 1 - 1 z ) superscript 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑎 𝑐 1 𝑎 𝑏 𝑐 1 1 1 𝑧 superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑎 𝑏 𝑐 1 1 1 𝑧 {\displaystyle{\displaystyle z^{-a}F\left({a,a-c+1\atop a+b-c+1};1-\frac{1}{z}% \right)=z^{-b}F\left({b,b-c+1\atop a+b-c+1};1-\frac{1}{z}\right)}}
z^{-a}\hyperF@@{a}{a-c+1}{a+b-c+1}{1-\frac{1}{z}} = z^{-b}\hyperF@@{b}{b-c+1}{a+b-c+1}{1-\frac{1}{z}}

(z)^(- a)* hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z)) = (z)^(- b)* hypergeom([b, b - c + 1], [a + b - c + 1], 1 -(1)/(z))
(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]] == (z)^(- b)* Hypergeometric2F1[b, b - c + 1, a + b - c + 1, 1 -Divide[1,z]]
Failure Failure
Failed [70 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [71 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E14 w 4 ( z ) = ( 1 - z ) c - a - b F ( c - a , c - b c - a - b + 1 ; 1 - z ) subscript 𝑤 4 𝑧 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 𝑐 𝑎 𝑐 𝑏 𝑐 𝑎 𝑏 1 1 𝑧 {\displaystyle{\displaystyle w_{4}(z)=(1-z)^{c-a-b}F\left({c-a,c-b\atop c-a-b+% 1};1-z\right)}}
w_{4}(z) = (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c-a-b+1}{1-z}

w[4](z) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)
Subscript[w, 4][z] == (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z]
Failure Failure
Failed [300 / 300]
Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[4] = 1/2*3^(1/2)+1/2*I}

Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[4] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 4], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 4], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E14 ( 1 - z ) c - a - b F ( c - a , c - b c - a - b + 1 ; 1 - z ) = z 1 - c ( 1 - z ) c - a - b F ( 1 - a , 1 - b c - a - b + 1 ; 1 - z ) superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 𝑐 𝑎 𝑐 𝑏 𝑐 𝑎 𝑏 1 1 𝑧 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 1 𝑏 𝑐 𝑎 𝑏 1 1 𝑧 {\displaystyle{\displaystyle(1-z)^{c-a-b}F\left({c-a,c-b\atop c-a-b+1};1-z% \right)=z^{1-c}(1-z)^{c-a-b}F\left({1-a,1-b\atop c-a-b+1};1-z\right)}}
(1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c-a-b+1}{1-z} = z^{1-c}(1-z)^{c-a-b}\hyperF@@{1-a}{1-b}{c-a-b+1}{1-z}

(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z) = (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [c - a - b + 1], 1 - z)
(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z] == (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, c - a - b + 1, 1 - z]
Failure Successful Skipped - Because timed out
Failed [35 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.10.E14 z 1 - c ( 1 - z ) c - a - b F ( 1 - a , 1 - b c - a - b + 1 ; 1 - z ) = z a - c ( 1 - z ) c - a - b F ( 1 - a , c - a c - a - b + 1 ; 1 - 1 z ) superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 1 𝑏 𝑐 𝑎 𝑏 1 1 𝑧 superscript 𝑧 𝑎 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 𝑐 𝑎 𝑐 𝑎 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle z^{1-c}(1-z)^{c-a-b}F\left({1-a,1-b\atop c-a-b+1}% ;1-z\right)=z^{a-c}(1-z)^{c-a-b}F\left({1-a,c-a\atop c-a-b+1};1-\frac{1}{z}% \right)}}
z^{1-c}(1-z)^{c-a-b}\hyperF@@{1-a}{1-b}{c-a-b+1}{1-z} = z^{a-c}(1-z)^{c-a-b}\hyperF@@{1-a}{c-a}{c-a-b+1}{1-\frac{1}{z}}

(z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [c - a - b + 1], 1 - z) = (z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [c - a - b + 1], 1 -(1)/(z))
(z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, c - a - b + 1, 1 - z] == (z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, c - a - b + 1, 1 -Divide[1,z]]
Failure Failure Skipped - Because timed out
Failed [35 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E14 z a - c ( 1 - z ) c - a - b F ( 1 - a , c - a c - a - b + 1 ; 1 - 1 z ) = z b - c ( 1 - z ) c - a - b F ( 1 - b , c - b c - a - b + 1 ; 1 - 1 z ) superscript 𝑧 𝑎 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 𝑐 𝑎 𝑐 𝑎 𝑏 1 1 1 𝑧 superscript 𝑧 𝑏 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑏 𝑐 𝑏 𝑐 𝑎 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle z^{a-c}(1-z)^{c-a-b}F\left({1-a,c-a\atop c-a-b+1}% ;1-\frac{1}{z}\right)=z^{b-c}(1-z)^{c-a-b}F\left({1-b,c-b\atop c-a-b+1};1-% \frac{1}{z}\right)}}
z^{a-c}(1-z)^{c-a-b}\hyperF@@{1-a}{c-a}{c-a-b+1}{1-\frac{1}{z}} = z^{b-c}(1-z)^{c-a-b}\hyperF@@{1-b}{c-b}{c-a-b+1}{1-\frac{1}{z}}

(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [c - a - b + 1], 1 -(1)/(z)) = (z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [c - a - b + 1], 1 -(1)/(z))
(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, c - a - b + 1, 1 -Divide[1,z]] == (z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, c - a - b + 1, 1 -Divide[1,z]]
Failure Failure Skipped - Because timed out
Failed [35 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E15 w 5 ( z ) = e a π i z - a F ( a , a - c + 1 a - b + 1 ; 1 z ) subscript 𝑤 5 𝑧 superscript 𝑒 𝑎 𝜋 imaginary-unit superscript 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑎 𝑐 1 𝑎 𝑏 1 1 𝑧 {\displaystyle{\displaystyle w_{5}(z)=e^{a\pi\mathrm{i}}z^{-a}\*F\left({a,a-c+% 1\atop a-b+1};\frac{1}{z}\right)}}
w_{5}(z) = e^{a\pi\iunit}z^{-a}\*\hyperF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}}

w[5](z) = exp(a*Pi*I)*(z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))
Subscript[w, 5][z] == Exp[a*Pi*I]*(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]]
Failure Failure
Failed [300 / 300]
Result: .6425210464+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[5] = 1/2*3^(1/2)+1/2*I}

Result: -.7235043580+.8440762414*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[5] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2711656082250785, 0.5010855048154754]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6126719591711882, 0.4095791538693657]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E15 e a π i z - a F ( a , a - c + 1 a - b + 1 ; 1 z ) = e ( c - b ) π i z b - c ( 1 - z ) c - a - b F ( 1 - b , c - b a - b + 1 ; 1 z ) superscript 𝑒 𝑎 𝜋 imaginary-unit superscript 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑎 𝑐 1 𝑎 𝑏 1 1 𝑧 superscript 𝑒 𝑐 𝑏 𝜋 imaginary-unit superscript 𝑧 𝑏 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑏 𝑐 𝑏 𝑎 𝑏 1 1 𝑧 {\displaystyle{\displaystyle e^{a\pi\mathrm{i}}z^{-a}\*F\left({a,a-c+1\atop a-% b+1};\frac{1}{z}\right)=e^{(c-b)\pi\mathrm{i}}z^{b-c}(1-z)^{c-a-b}\*F\left({1-% b,c-b\atop a-b+1};\frac{1}{z}\right)}}
e^{a\pi\iunit}z^{-a}\*\hyperF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}} = e^{(c-b)\pi\iunit}z^{b-c}(1-z)^{c-a-b}\*\hyperF@@{1-b}{c-b}{a-b+1}{\frac{1}{z}}

exp(a*Pi*I)*(z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z)) = exp((c - b)*Pi*I)*(z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [a - b + 1], (1)/(z))
Exp[a*Pi*I]*(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]] == Exp[(c - b)*Pi*I]*(z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, a - b + 1, Divide[1,z]]
Failure Failure
Failed [177 / 300]
Result: -.2921784397e-9-2.000000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)}

Result: -4.961420107-2.055087494*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [177 / 300]
Result: Complex[-1.139753528477389, -1.1397535284773888]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

Result: Complex[-3.3917924817064886, -0.8989459473483532]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.10.E15 e ( c - b ) π i z b - c ( 1 - z ) c - a - b F ( 1 - b , c - b a - b + 1 ; 1 z ) = ( 1 - z ) - a F ( a , c - b a - b + 1 ; 1 1 - z ) superscript 𝑒 𝑐 𝑏 𝜋 imaginary-unit superscript 𝑧 𝑏 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑏 𝑐 𝑏 𝑎 𝑏 1 1 𝑧 superscript 1 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑐 𝑏 𝑎 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle e^{(c-b)\pi\mathrm{i}}z^{b-c}(1-z)^{c-a-b}\*F% \left({1-b,c-b\atop a-b+1};\frac{1}{z}\right)=(1-z)^{-a}F\left({a,c-b\atop a-b% +1};\frac{1}{1-z}\right)}}
e^{(c-b)\pi\iunit}z^{b-c}(1-z)^{c-a-b}\*\hyperF@@{1-b}{c-b}{a-b+1}{\frac{1}{z}} = (1-z)^{-a}\hyperF@@{a}{c-b}{a-b+1}{\frac{1}{1-z}}

exp((c - b)*Pi*I)*(z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [a - b + 1], (1)/(z)) = (1 - z)^(- a)* hypergeom([a, c - b], [a - b + 1], (1)/(1 - z))
Exp[(c - b)*Pi*I]*(z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, a - b + 1, Divide[1,z]] == (1 - z)^(- a)* Hypergeometric2F1[a, c - b, a - b + 1, Divide[1,1 - z]]
Failure Failure
Failed [151 / 300]
Result: -.3698264781e-8+6.010407640*I
Test Values: {a = -3/2, b = -3/2, c = 3/2, z = 1/2}

Result: -.1450299914e-9+.7071067812*I
Test Values: {a = -3/2, b = -3/2, c = -1/2, z = 1/2}

... skip entries to safe data
Failed [151 / 300]
Result: Complex[-7.360626478001693*^-16, 6.0104076400856545]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 0.5]}

Result: Complex[-1.232595164407831*^-32, 0.7071067811865476]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -0.5], Rule[z, 0.5]}

... skip entries to safe data
15.10.E15 ( 1 - z ) - a F ( a , c - b a - b + 1 ; 1 1 - z ) = e ( c - 1 ) π i z 1 - c ( 1 - z ) c - a - 1 F ( 1 - b , a - c + 1 a - b + 1 ; 1 1 - z ) superscript 1 𝑧 𝑎 Gauss-hypergeometric-F 𝑎 𝑐 𝑏 𝑎 𝑏 1 1 1 𝑧 superscript 𝑒 𝑐 1 𝜋 imaginary-unit superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑎 1 Gauss-hypergeometric-F 1 𝑏 𝑎 𝑐 1 𝑎 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle(1-z)^{-a}F\left({a,c-b\atop a-b+1};\frac{1}{1-z}% \right)=e^{(c-1)\pi\mathrm{i}}z^{1-c}(1-z)^{c-a-1}\*F\left({1-b,a-c+1\atop a-b% +1};\frac{1}{1-z}\right)}}
(1-z)^{-a}\hyperF@@{a}{c-b}{a-b+1}{\frac{1}{1-z}} = e^{(c-1)\pi\iunit}z^{1-c}(1-z)^{c-a-1}\*\hyperF@@{1-b}{a-c+1}{a-b+1}{\frac{1}{1-z}}

(1 - z)^(- a)* hypergeom([a, c - b], [a - b + 1], (1)/(1 - z)) = exp((c - 1)*Pi*I)*(z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([1 - b, a - c + 1], [a - b + 1], (1)/(1 - z))
(1 - z)^(- a)* Hypergeometric2F1[a, c - b, a - b + 1, Divide[1,1 - z]] == Exp[(c - 1)*Pi*I]*(z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[1 - b, a - c + 1, a - b + 1, Divide[1,1 - z]]
Failure Failure
Failed [210 / 300]
Result: .8062461775e-9+2.000000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)}

Result: 4.961420108+2.055087494*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [210 / 300]
Result: Complex[1.1397535284773888, 1.1397535284773896]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

Result: Complex[3.391792481706486, 0.8989459473483523]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.10.E16 w 6 ( z ) = e b π i z - b F ( b , b - c + 1 b - a + 1 ; 1 z ) subscript 𝑤 6 𝑧 superscript 𝑒 𝑏 𝜋 imaginary-unit superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑏 𝑎 1 1 𝑧 {\displaystyle{\displaystyle w_{6}(z)=e^{b\pi\mathrm{i}}z^{-b}F\left({b,b-c+1% \atop b-a+1};\frac{1}{z}\right)}}
w_{6}(z) = e^{b\pi\iunit}z^{-b}\hyperF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}}

w[6](z) = exp(b*Pi*I)*(z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))
Subscript[w, 6][z] == Exp[b*Pi*I]*(z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]]
Failure Failure
Failed [300 / 300]
Result: .6425210464+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[6] = 1/2*3^(1/2)+1/2*I}

Result: -.7235043580+.8440762414*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[6] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2711656082250785, 0.5010855048154754]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 6], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6126719591711882, 0.4095791538693657]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 6], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.10.E16 e b π i z - b F ( b , b - c + 1 b - a + 1 ; 1 z ) = e ( c - a ) π i z a - c ( 1 - z ) c - a - b F ( 1 - a , c - a b - a + 1 ; 1 z ) superscript 𝑒 𝑏 𝜋 imaginary-unit superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑏 𝑎 1 1 𝑧 superscript 𝑒 𝑐 𝑎 𝜋 imaginary-unit superscript 𝑧 𝑎 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 𝑐 𝑎 𝑏 𝑎 1 1 𝑧 {\displaystyle{\displaystyle e^{b\pi\mathrm{i}}z^{-b}F\left({b,b-c+1\atop b-a+% 1};\frac{1}{z}\right)=e^{(c-a)\pi\mathrm{i}}z^{a-c}(1-z)^{c-a-b}\*F\left({1-a,% c-a\atop b-a+1};\frac{1}{z}\right)}}
e^{b\pi\iunit}z^{-b}\hyperF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}} = e^{(c-a)\pi\iunit}z^{a-c}(1-z)^{c-a-b}\*\hyperF@@{1-a}{c-a}{b-a+1}{\frac{1}{z}}

exp(b*Pi*I)*(z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z)) = exp((c - a)*Pi*I)*(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [b - a + 1], (1)/(z))
Exp[b*Pi*I]*(z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]] == Exp[(c - a)*Pi*I]*(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, b - a + 1, Divide[1,z]]
Failure Failure Skipped - Because timed out
Failed [125 / 300]
Result: Complex[-1.139753528477389, -1.1397535284773888]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

Result: Complex[-3.3917924817064886, -0.8989459473483532]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.10.E16 e ( c - a ) π i z a - c ( 1 - z ) c - a - b F ( 1 - a , c - a b - a + 1 ; 1 z ) = ( 1 - z ) - b F ( b , c - a b - a + 1 ; 1 1 - z ) superscript 𝑒 𝑐 𝑎 𝜋 imaginary-unit superscript 𝑧 𝑎 𝑐 superscript 1 𝑧 𝑐 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 𝑐 𝑎 𝑏 𝑎 1 1 𝑧 superscript 1 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑐 𝑎 𝑏 𝑎 1 1 1 𝑧 {\displaystyle{\displaystyle e^{(c-a)\pi\mathrm{i}}z^{a-c}(1-z)^{c-a-b}\*F% \left({1-a,c-a\atop b-a+1};\frac{1}{z}\right)=(1-z)^{-b}F\left({b,c-a\atop b-a% +1};\frac{1}{1-z}\right)}}
e^{(c-a)\pi\iunit}z^{a-c}(1-z)^{c-a-b}\*\hyperF@@{1-a}{c-a}{b-a+1}{\frac{1}{z}} = (1-z)^{-b}\hyperF@@{b}{c-a}{b-a+1}{\frac{1}{1-z}}

exp((c - a)*Pi*I)*(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [b - a + 1], (1)/(z)) = (1 - z)^(- b)* hypergeom([b, c - a], [b - a + 1], (1)/(1 - z))
Exp[(c - a)*Pi*I]*(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, b - a + 1, Divide[1,z]] == (1 - z)^(- b)* Hypergeometric2F1[b, c - a, b - a + 1, Divide[1,1 - z]]
Failure Failure Skipped - Because timed out
Failed [94 / 300]
Result: Complex[-7.360626478001693*^-16, 6.0104076400856545]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 0.5]}

Result: Complex[-1.232595164407831*^-32, 0.7071067811865476]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -0.5], Rule[z, 0.5]}

... skip entries to safe data
15.10.E16 ( 1 - z ) - b F ( b , c - a b - a + 1 ; 1 1 - z ) = e ( c - 1 ) π i z 1 - c ( 1 - z ) c - b - 1 F ( 1 - a , b - c + 1 b - a + 1 ; 1 1 - z ) superscript 1 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑐 𝑎 𝑏 𝑎 1 1 1 𝑧 superscript 𝑒 𝑐 1 𝜋 imaginary-unit superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑏 1 Gauss-hypergeometric-F 1 𝑎 𝑏 𝑐 1 𝑏 𝑎 1 1 1 𝑧 {\displaystyle{\displaystyle(1-z)^{-b}F\left({b,c-a\atop b-a+1};\frac{1}{1-z}% \right)=e^{(c-1)\pi\mathrm{i}}z^{1-c}(1-z)^{c-b-1}\*F\left({1-a,b-c+1\atop b-a% +1};\frac{1}{1-z}\right)}}
(1-z)^{-b}\hyperF@@{b}{c-a}{b-a+1}{\frac{1}{1-z}} = e^{(c-1)\pi\iunit}z^{1-c}(1-z)^{c-b-1}\*\hyperF@@{1-a}{b-c+1}{b-a+1}{\frac{1}{1-z}}

(1 - z)^(- b)* hypergeom([b, c - a], [b - a + 1], (1)/(1 - z)) = exp((c - 1)*Pi*I)*(z)^(1 - c)*(1 - z)^(c - b - 1)* hypergeom([1 - a, b - c + 1], [b - a + 1], (1)/(1 - z))
(1 - z)^(- b)* Hypergeometric2F1[b, c - a, b - a + 1, Divide[1,1 - z]] == Exp[(c - 1)*Pi*I]*(z)^(1 - c)*(1 - z)^(c - b - 1)* Hypergeometric2F1[1 - a, b - c + 1, b - a + 1, Divide[1,1 - z]]
Failure Failure Skipped - Because timed out
Failed [166 / 300]
Result: Complex[1.1397535284773888, 1.1397535284773896]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

Result: Complex[3.391792481706486, 0.8989459473483523]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.10.E17 w 3 ( z ) = Γ ( 1 - c ) Γ ( a + b - c + 1 ) Γ ( a - c + 1 ) Γ ( b - c + 1 ) w 1 ( z ) + Γ ( c - 1 ) Γ ( a + b - c + 1 ) Γ ( a ) Γ ( b ) w 2 ( z ) subscript 𝑤 3 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑎 𝑐 1 Euler-Gamma 𝑏 𝑐 1 subscript 𝑤 1 𝑧 Euler-Gamma 𝑐 1 Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑎 Euler-Gamma 𝑏 subscript 𝑤 2 𝑧 {\displaystyle{\displaystyle w_{3}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% a+b-c+1\right)}{\Gamma\left(a-c+1\right)\Gamma\left(b-c+1\right)}w_{1}(z)+% \frac{\Gamma\left(c-1\right)\Gamma\left(a+b-c+1\right)}{\Gamma\left(a\right)% \Gamma\left(b\right)}w_{2}(z)}}
w_{3}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{a+b-c+1}}{\EulerGamma@{a-c+1}\EulerGamma@{b-c+1}}w_{1}(z)+\frac{\EulerGamma@{c-1}\EulerGamma@{a+b-c+1}}{\EulerGamma@{a}\EulerGamma@{b}}w_{2}(z)
( 1 - c ) > 0 , ( a + b - c + 1 ) > 0 , ( a - c + 1 ) > 0 , ( b - c + 1 ) > 0 , ( c - 1 ) > 0 , a > 0 , b > 0 formulae-sequence 1 𝑐 0 formulae-sequence 𝑎 𝑏 𝑐 1 0 formulae-sequence 𝑎 𝑐 1 0 formulae-sequence 𝑏 𝑐 1 0 formulae-sequence 𝑐 1 0 formulae-sequence 𝑎 0 𝑏 0 {\displaystyle{\displaystyle\Re(1-c)>0,\Re(a+b-c+1)>0,\Re(a-c+1)>0,\Re(b-c+1)>% 0,\Re(c-1)>0,\Re a>0,\Re b>0}}
w[3](z) = (GAMMA(1 - c)*GAMMA(a + b - c + 1))/(GAMMA(a - c + 1)*GAMMA(b - c + 1))*w[1](z)+(GAMMA(c - 1)*GAMMA(a + b - c + 1))/(GAMMA(a)*GAMMA(b))*w[2](z)
Subscript[w, 3][z] == Divide[Gamma[1 - c]*Gamma[a + b - c + 1],Gamma[a - c + 1]*Gamma[b - c + 1]]*Subscript[w, 1][z]+Divide[Gamma[c - 1]*Gamma[a + b - c + 1],Gamma[a]*Gamma[b]]*Subscript[w, 2][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E18 w 4 ( z ) = Γ ( 1 - c ) Γ ( c - a - b + 1 ) Γ ( 1 - a ) Γ ( 1 - b ) w 1 ( z ) + Γ ( c - 1 ) Γ ( c - a - b + 1 ) Γ ( c - a ) Γ ( c - b ) w 2 ( z ) subscript 𝑤 4 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma 𝑐 𝑎 𝑏 1 Euler-Gamma 1 𝑎 Euler-Gamma 1 𝑏 subscript 𝑤 1 𝑧 Euler-Gamma 𝑐 1 Euler-Gamma 𝑐 𝑎 𝑏 1 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑐 𝑏 subscript 𝑤 2 𝑧 {\displaystyle{\displaystyle w_{4}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% c-a-b+1\right)}{\Gamma\left(1-a\right)\Gamma\left(1-b\right)}w_{1}(z)+\frac{% \Gamma\left(c-1\right)\Gamma\left(c-a-b+1\right)}{\Gamma\left(c-a\right)\Gamma% \left(c-b\right)}w_{2}(z)}}
w_{4}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{c-a-b+1}}{\EulerGamma@{1-a}\EulerGamma@{1-b}}w_{1}(z)+\frac{\EulerGamma@{c-1}\EulerGamma@{c-a-b+1}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}w_{2}(z)
( 1 - c ) > 0 , ( c - a - b + 1 ) > 0 , ( 1 - a ) > 0 , ( 1 - b ) > 0 , ( c - 1 ) > 0 , ( c - a ) > 0 , ( c - b ) > 0 formulae-sequence 1 𝑐 0 formulae-sequence 𝑐 𝑎 𝑏 1 0 formulae-sequence 1 𝑎 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑐 1 0 formulae-sequence 𝑐 𝑎 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re(1-c)>0,\Re(c-a-b+1)>0,\Re(1-a)>0,\Re(1-b)>0,% \Re(c-1)>0,\Re(c-a)>0,\Re(c-b)>0}}
w[4](z) = (GAMMA(1 - c)*GAMMA(c - a - b + 1))/(GAMMA(1 - a)*GAMMA(1 - b))*w[1](z)+(GAMMA(c - 1)*GAMMA(c - a - b + 1))/(GAMMA(c - a)*GAMMA(c - b))*w[2](z)
Subscript[w, 4][z] == Divide[Gamma[1 - c]*Gamma[c - a - b + 1],Gamma[1 - a]*Gamma[1 - b]]*Subscript[w, 1][z]+Divide[Gamma[c - 1]*Gamma[c - a - b + 1],Gamma[c - a]*Gamma[c - b]]*Subscript[w, 2][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E19 w 5 ( z ) = Γ ( 1 - c ) Γ ( a - b + 1 ) Γ ( a - c + 1 ) Γ ( 1 - b ) w 1 ( z ) + e ( c - 1 ) π i Γ ( c - 1 ) Γ ( a - b + 1 ) Γ ( a ) Γ ( c - b ) w 2 ( z ) subscript 𝑤 5 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 𝑎 𝑐 1 Euler-Gamma 1 𝑏 subscript 𝑤 1 𝑧 superscript 𝑒 𝑐 1 𝜋 imaginary-unit Euler-Gamma 𝑐 1 Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 𝑎 Euler-Gamma 𝑐 𝑏 subscript 𝑤 2 𝑧 {\displaystyle{\displaystyle w_{5}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% a-b+1\right)}{\Gamma\left(a-c+1\right)\Gamma\left(1-b\right)}w_{1}(z)+e^{(c-1)% \pi\mathrm{i}}\frac{\Gamma\left(c-1\right)\Gamma\left(a-b+1\right)}{\Gamma% \left(a\right)\Gamma\left(c-b\right)}w_{2}(z)}}
w_{5}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{a-b+1}}{\EulerGamma@{a-c+1}\EulerGamma@{1-b}}w_{1}(z)+e^{(c-1)\pi\iunit}\frac{\EulerGamma@{c-1}\EulerGamma@{a-b+1}}{\EulerGamma@{a}\EulerGamma@{c-b}}w_{2}(z)
( 1 - c ) > 0 , ( a - b + 1 ) > 0 , ( a - c + 1 ) > 0 , ( 1 - b ) > 0 , ( c - 1 ) > 0 , a > 0 , ( c - b ) > 0 formulae-sequence 1 𝑐 0 formulae-sequence 𝑎 𝑏 1 0 formulae-sequence 𝑎 𝑐 1 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑐 1 0 formulae-sequence 𝑎 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re(1-c)>0,\Re(a-b+1)>0,\Re(a-c+1)>0,\Re(1-b)>0,% \Re(c-1)>0,\Re a>0,\Re(c-b)>0}}
w[5](z) = (GAMMA(1 - c)*GAMMA(a - b + 1))/(GAMMA(a - c + 1)*GAMMA(1 - b))*w[1](z)+ exp((c - 1)*Pi*I)*(GAMMA(c - 1)*GAMMA(a - b + 1))/(GAMMA(a)*GAMMA(c - b))*w[2](z)
Subscript[w, 5][z] == Divide[Gamma[1 - c]*Gamma[a - b + 1],Gamma[a - c + 1]*Gamma[1 - b]]*Subscript[w, 1][z]+ Exp[(c - 1)*Pi*I]*Divide[Gamma[c - 1]*Gamma[a - b + 1],Gamma[a]*Gamma[c - b]]*Subscript[w, 2][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E20 w 6 ( z ) = Γ ( 1 - c ) Γ ( b - a + 1 ) Γ ( b - c + 1 ) Γ ( 1 - a ) w 1 ( z ) + e ( c - 1 ) π i Γ ( c - 1 ) Γ ( b - a + 1 ) Γ ( b ) Γ ( c - a ) w 2 ( z ) subscript 𝑤 6 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma 1 𝑎 subscript 𝑤 1 𝑧 superscript 𝑒 𝑐 1 𝜋 imaginary-unit Euler-Gamma 𝑐 1 Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑎 subscript 𝑤 2 𝑧 {\displaystyle{\displaystyle w_{6}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% b-a+1\right)}{\Gamma\left(b-c+1\right)\Gamma\left(1-a\right)}w_{1}(z)+e^{(c-1)% \pi\mathrm{i}}\frac{\Gamma\left(c-1\right)\Gamma\left(b-a+1\right)}{\Gamma% \left(b\right)\Gamma\left(c-a\right)}w_{2}(z)}}
w_{6}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{b-a+1}}{\EulerGamma@{b-c+1}\EulerGamma@{1-a}}w_{1}(z)+e^{(c-1)\pi\iunit}\frac{\EulerGamma@{c-1}\EulerGamma@{b-a+1}}{\EulerGamma@{b}\EulerGamma@{c-a}}w_{2}(z)
( 1 - c ) > 0 , ( b - a + 1 ) > 0 , ( b - c + 1 ) > 0 , ( 1 - a ) > 0 , ( c - 1 ) > 0 , b > 0 , ( c - a ) > 0 formulae-sequence 1 𝑐 0 formulae-sequence 𝑏 𝑎 1 0 formulae-sequence 𝑏 𝑐 1 0 formulae-sequence 1 𝑎 0 formulae-sequence 𝑐 1 0 formulae-sequence 𝑏 0 𝑐 𝑎 0 {\displaystyle{\displaystyle\Re(1-c)>0,\Re(b-a+1)>0,\Re(b-c+1)>0,\Re(1-a)>0,% \Re(c-1)>0,\Re b>0,\Re(c-a)>0}}
w[6](z) = (GAMMA(1 - c)*GAMMA(b - a + 1))/(GAMMA(b - c + 1)*GAMMA(1 - a))*w[1](z)+ exp((c - 1)*Pi*I)*(GAMMA(c - 1)*GAMMA(b - a + 1))/(GAMMA(b)*GAMMA(c - a))*w[2](z)
Subscript[w, 6][z] == Divide[Gamma[1 - c]*Gamma[b - a + 1],Gamma[b - c + 1]*Gamma[1 - a]]*Subscript[w, 1][z]+ Exp[(c - 1)*Pi*I]*Divide[Gamma[c - 1]*Gamma[b - a + 1],Gamma[b]*Gamma[c - a]]*Subscript[w, 2][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E21 w 1 ( z ) = Γ ( c ) Γ ( c - a - b ) Γ ( c - a ) Γ ( c - b ) w 3 ( z ) + Γ ( c ) Γ ( a + b - c ) Γ ( a ) Γ ( b ) w 4 ( z ) subscript 𝑤 1 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑐 𝑎 𝑏 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑐 𝑏 subscript 𝑤 3 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑎 𝑏 𝑐 Euler-Gamma 𝑎 Euler-Gamma 𝑏 subscript 𝑤 4 𝑧 {\displaystyle{\displaystyle w_{1}(z)=\frac{\Gamma\left(c\right)\Gamma\left(c-% a-b\right)}{\Gamma\left(c-a\right)\Gamma\left(c-b\right)}w_{3}(z)+\frac{\Gamma% \left(c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a\right)\Gamma\left(b% \right)}w_{4}(z)}}
w_{1}(z) = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}w_{3}(z)+\frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}w_{4}(z)
c > 0 , ( c - a - b ) > 0 , ( c - a ) > 0 , ( c - b ) > 0 , ( a + b - c ) > 0 , a > 0 , b > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑐 𝑎 𝑏 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑎 𝑏 𝑐 0 formulae-sequence 𝑎 0 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(c-a-b)>0,\Re(c-a)>0,\Re(c-b)>0,\Re(a+b% -c)>0,\Re a>0,\Re b>0}}
w[1](z) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))*w[3](z)+(GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))*w[4](z)
Subscript[w, 1][z] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]*Subscript[w, 3][z]+Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]*Subscript[w, 4][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E22 w 2 ( z ) = Γ ( 2 - c ) Γ ( c - a - b ) Γ ( 1 - a ) Γ ( 1 - b ) w 3 ( z ) + Γ ( 2 - c ) Γ ( a + b - c ) Γ ( a - c + 1 ) Γ ( b - c + 1 ) w 4 ( z ) subscript 𝑤 2 𝑧 Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑎 𝑏 Euler-Gamma 1 𝑎 Euler-Gamma 1 𝑏 subscript 𝑤 3 𝑧 Euler-Gamma 2 𝑐 Euler-Gamma 𝑎 𝑏 𝑐 Euler-Gamma 𝑎 𝑐 1 Euler-Gamma 𝑏 𝑐 1 subscript 𝑤 4 𝑧 {\displaystyle{\displaystyle w_{2}(z)=\frac{\Gamma\left(2-c\right)\Gamma\left(% c-a-b\right)}{\Gamma\left(1-a\right)\Gamma\left(1-b\right)}w_{3}(z)+\frac{% \Gamma\left(2-c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a-c+1\right)\Gamma% \left(b-c+1\right)}w_{4}(z)}}
w_{2}(z) = \frac{\EulerGamma@{2-c}\EulerGamma@{c-a-b}}{\EulerGamma@{1-a}\EulerGamma@{1-b}}w_{3}(z)+\frac{\EulerGamma@{2-c}\EulerGamma@{a+b-c}}{\EulerGamma@{a-c+1}\EulerGamma@{b-c+1}}w_{4}(z)
( 2 - c ) > 0 , ( c - a - b ) > 0 , ( 1 - a ) > 0 , ( 1 - b ) > 0 , ( a + b - c ) > 0 , ( a - c + 1 ) > 0 , ( b - c + 1 ) > 0 formulae-sequence 2 𝑐 0 formulae-sequence 𝑐 𝑎 𝑏 0 formulae-sequence 1 𝑎 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑎 𝑏 𝑐 0 formulae-sequence 𝑎 𝑐 1 0 𝑏 𝑐 1 0 {\displaystyle{\displaystyle\Re(2-c)>0,\Re(c-a-b)>0,\Re(1-a)>0,\Re(1-b)>0,\Re(% a+b-c)>0,\Re(a-c+1)>0,\Re(b-c+1)>0}}
w[2](z) = (GAMMA(2 - c)*GAMMA(c - a - b))/(GAMMA(1 - a)*GAMMA(1 - b))*w[3](z)+(GAMMA(2 - c)*GAMMA(a + b - c))/(GAMMA(a - c + 1)*GAMMA(b - c + 1))*w[4](z)
Subscript[w, 2][z] == Divide[Gamma[2 - c]*Gamma[c - a - b],Gamma[1 - a]*Gamma[1 - b]]*Subscript[w, 3][z]+Divide[Gamma[2 - c]*Gamma[a + b - c],Gamma[a - c + 1]*Gamma[b - c + 1]]*Subscript[w, 4][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E23 w 5 ( z ) = e a π i Γ ( a - b + 1 ) Γ ( c - a - b ) Γ ( 1 - b ) Γ ( c - b ) w 3 ( z ) + e ( c - b ) π i Γ ( a - b + 1 ) Γ ( a + b - c ) Γ ( a ) Γ ( a - c + 1 ) w 4 ( z ) subscript 𝑤 5 𝑧 superscript 𝑒 𝑎 𝜋 imaginary-unit Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 𝑐 𝑎 𝑏 Euler-Gamma 1 𝑏 Euler-Gamma 𝑐 𝑏 subscript 𝑤 3 𝑧 superscript 𝑒 𝑐 𝑏 𝜋 imaginary-unit Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 𝑎 𝑏 𝑐 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑐 1 subscript 𝑤 4 𝑧 {\displaystyle{\displaystyle w_{5}(z)=e^{a\pi\mathrm{i}}\frac{\Gamma\left(a-b+% 1\right)\Gamma\left(c-a-b\right)}{\Gamma\left(1-b\right)\Gamma\left(c-b\right)% }w_{3}(z)+e^{(c-b)\pi\mathrm{i}}\frac{\Gamma\left(a-b+1\right)\Gamma\left(a+b-% c\right)}{\Gamma\left(a\right)\Gamma\left(a-c+1\right)}w_{4}(z)}}
w_{5}(z) = e^{a\pi\iunit}\frac{\EulerGamma@{a-b+1}\EulerGamma@{c-a-b}}{\EulerGamma@{1-b}\EulerGamma@{c-b}}w_{3}(z)+e^{(c-b)\pi\iunit}\frac{\EulerGamma@{a-b+1}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{a-c+1}}w_{4}(z)
( a - b + 1 ) > 0 , ( c - a - b ) > 0 , ( 1 - b ) > 0 , ( c - b ) > 0 , ( a + b - c ) > 0 , a > 0 , ( a - c + 1 ) > 0 formulae-sequence 𝑎 𝑏 1 0 formulae-sequence 𝑐 𝑎 𝑏 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑎 𝑏 𝑐 0 formulae-sequence 𝑎 0 𝑎 𝑐 1 0 {\displaystyle{\displaystyle\Re(a-b+1)>0,\Re(c-a-b)>0,\Re(1-b)>0,\Re(c-b)>0,% \Re(a+b-c)>0,\Re a>0,\Re(a-c+1)>0}}
w[5](z) = exp(a*Pi*I)*(GAMMA(a - b + 1)*GAMMA(c - a - b))/(GAMMA(1 - b)*GAMMA(c - b))*w[3](z)+ exp((c - b)*Pi*I)*(GAMMA(a - b + 1)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(a - c + 1))*w[4](z)
Subscript[w, 5][z] == Exp[a*Pi*I]*Divide[Gamma[a - b + 1]*Gamma[c - a - b],Gamma[1 - b]*Gamma[c - b]]*Subscript[w, 3][z]+ Exp[(c - b)*Pi*I]*Divide[Gamma[a - b + 1]*Gamma[a + b - c],Gamma[a]*Gamma[a - c + 1]]*Subscript[w, 4][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E24 w 6 ( z ) = e b π i Γ ( b - a + 1 ) Γ ( c - a - b ) Γ ( 1 - a ) Γ ( c - a ) w 3 ( z ) + e ( c - a ) π i Γ ( b - a + 1 ) Γ ( a + b - c ) Γ ( b ) Γ ( b - c + 1 ) w 4 ( z ) subscript 𝑤 6 𝑧 superscript 𝑒 𝑏 𝜋 imaginary-unit Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 𝑐 𝑎 𝑏 Euler-Gamma 1 𝑎 Euler-Gamma 𝑐 𝑎 subscript 𝑤 3 𝑧 superscript 𝑒 𝑐 𝑎 𝜋 imaginary-unit Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 𝑎 𝑏 𝑐 Euler-Gamma 𝑏 Euler-Gamma 𝑏 𝑐 1 subscript 𝑤 4 𝑧 {\displaystyle{\displaystyle w_{6}(z)=e^{b\pi\mathrm{i}}\frac{\Gamma\left(b-a+% 1\right)\Gamma\left(c-a-b\right)}{\Gamma\left(1-a\right)\Gamma\left(c-a\right)% }w_{3}(z)+e^{(c-a)\pi\mathrm{i}}\frac{\Gamma\left(b-a+1\right)\Gamma\left(a+b-% c\right)}{\Gamma\left(b\right)\Gamma\left(b-c+1\right)}w_{4}(z)}}
w_{6}(z) = e^{b\pi\iunit}\frac{\EulerGamma@{b-a+1}\EulerGamma@{c-a-b}}{\EulerGamma@{1-a}\EulerGamma@{c-a}}w_{3}(z)+e^{(c-a)\pi\iunit}\frac{\EulerGamma@{b-a+1}\EulerGamma@{a+b-c}}{\EulerGamma@{b}\EulerGamma@{b-c+1}}w_{4}(z)
( b - a + 1 ) > 0 , ( c - a - b ) > 0 , ( 1 - a ) > 0 , ( c - a ) > 0 , ( a + b - c ) > 0 , b > 0 , ( b - c + 1 ) > 0 formulae-sequence 𝑏 𝑎 1 0 formulae-sequence 𝑐 𝑎 𝑏 0 formulae-sequence 1 𝑎 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑎 𝑏 𝑐 0 formulae-sequence 𝑏 0 𝑏 𝑐 1 0 {\displaystyle{\displaystyle\Re(b-a+1)>0,\Re(c-a-b)>0,\Re(1-a)>0,\Re(c-a)>0,% \Re(a+b-c)>0,\Re b>0,\Re(b-c+1)>0}}
w[6](z) = exp(b*Pi*I)*(GAMMA(b - a + 1)*GAMMA(c - a - b))/(GAMMA(1 - a)*GAMMA(c - a))*w[3](z)+ exp((c - a)*Pi*I)*(GAMMA(b - a + 1)*GAMMA(a + b - c))/(GAMMA(b)*GAMMA(b - c + 1))*w[4](z)
Subscript[w, 6][z] == Exp[b*Pi*I]*Divide[Gamma[b - a + 1]*Gamma[c - a - b],Gamma[1 - a]*Gamma[c - a]]*Subscript[w, 3][z]+ Exp[(c - a)*Pi*I]*Divide[Gamma[b - a + 1]*Gamma[a + b - c],Gamma[b]*Gamma[b - c + 1]]*Subscript[w, 4][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E25 w 1 ( z ) = Γ ( c ) Γ ( b - a ) Γ ( b ) Γ ( c - a ) w 5 ( z ) + Γ ( c ) Γ ( a - b ) Γ ( a ) Γ ( c - b ) w 6 ( z ) subscript 𝑤 1 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑏 𝑎 Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑎 subscript 𝑤 5 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑎 𝑏 Euler-Gamma 𝑎 Euler-Gamma 𝑐 𝑏 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{1}(z)=\frac{\Gamma\left(c\right)\Gamma\left(b-% a\right)}{\Gamma\left(b\right)\Gamma\left(c-a\right)}w_{5}(z)+\frac{\Gamma% \left(c\right)\Gamma\left(a-b\right)}{\Gamma\left(a\right)\Gamma\left(c-b% \right)}w_{6}(z)}}
w_{1}(z) = \frac{\EulerGamma@{c}\EulerGamma@{b-a}}{\EulerGamma@{b}\EulerGamma@{c-a}}w_{5}(z)+\frac{\EulerGamma@{c}\EulerGamma@{a-b}}{\EulerGamma@{a}\EulerGamma@{c-b}}w_{6}(z)
c > 0 , ( b - a ) > 0 , b > 0 , ( c - a ) > 0 , ( a - b ) > 0 , a > 0 , ( c - b ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑏 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑎 𝑏 0 formulae-sequence 𝑎 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(b-a)>0,\Re b>0,\Re(c-a)>0,\Re(a-b)>0,% \Re a>0,\Re(c-b)>0}}
w[1](z) = (GAMMA(c)*GAMMA(b - a))/(GAMMA(b)*GAMMA(c - a))*w[5](z)+(GAMMA(c)*GAMMA(a - b))/(GAMMA(a)*GAMMA(c - b))*w[6](z)
Subscript[w, 1][z] == Divide[Gamma[c]*Gamma[b - a],Gamma[b]*Gamma[c - a]]*Subscript[w, 5][z]+Divide[Gamma[c]*Gamma[a - b],Gamma[a]*Gamma[c - b]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E26 w 2 ( z ) = e ( 1 - c ) π i Γ ( 2 - c ) Γ ( b - a ) Γ ( 1 - a ) Γ ( b - c + 1 ) w 5 ( z ) + e ( 1 - c ) π i Γ ( 2 - c ) Γ ( a - b ) Γ ( 1 - b ) Γ ( a - c + 1 ) w 6 ( z ) subscript 𝑤 2 𝑧 superscript 𝑒 1 𝑐 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑏 𝑎 Euler-Gamma 1 𝑎 Euler-Gamma 𝑏 𝑐 1 subscript 𝑤 5 𝑧 superscript 𝑒 1 𝑐 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑎 𝑏 Euler-Gamma 1 𝑏 Euler-Gamma 𝑎 𝑐 1 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(1-c)\pi\mathrm{i}}\frac{\Gamma\left(% 2-c\right)\Gamma\left(b-a\right)}{\Gamma\left(1-a\right)\Gamma\left(b-c+1% \right)}w_{5}(z)+e^{(1-c)\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma\left% (a-b\right)}{\Gamma\left(1-b\right)\Gamma\left(a-c+1\right)}w_{6}(z)}}
w_{2}(z) = e^{(1-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{b-a}}{\EulerGamma@{1-a}\EulerGamma@{b-c+1}}w_{5}(z)+e^{(1-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{a-b}}{\EulerGamma@{1-b}\EulerGamma@{a-c+1}}w_{6}(z)
( 2 - c ) > 0 , ( b - a ) > 0 , ( 1 - a ) > 0 , ( b - c + 1 ) > 0 , ( a - b ) > 0 , ( 1 - b ) > 0 , ( a - c + 1 ) > 0 formulae-sequence 2 𝑐 0 formulae-sequence 𝑏 𝑎 0 formulae-sequence 1 𝑎 0 formulae-sequence 𝑏 𝑐 1 0 formulae-sequence 𝑎 𝑏 0 formulae-sequence 1 𝑏 0 𝑎 𝑐 1 0 {\displaystyle{\displaystyle\Re(2-c)>0,\Re(b-a)>0,\Re(1-a)>0,\Re(b-c+1)>0,\Re(% a-b)>0,\Re(1-b)>0,\Re(a-c+1)>0}}
w[2](z) = exp((1 - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(b - a))/(GAMMA(1 - a)*GAMMA(b - c + 1))*w[5](z)+ exp((1 - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(a - b))/(GAMMA(1 - b)*GAMMA(a - c + 1))*w[6](z)
Subscript[w, 2][z] == Exp[(1 - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[b - a],Gamma[1 - a]*Gamma[b - c + 1]]*Subscript[w, 5][z]+ Exp[(1 - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[a - b],Gamma[1 - b]*Gamma[a - c + 1]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E27 w 3 ( z ) = e - a π i Γ ( a + b - c + 1 ) Γ ( b - a ) Γ ( b ) Γ ( b - c + 1 ) w 5 ( z ) + e - b π i Γ ( a + b - c + 1 ) Γ ( a - b ) Γ ( a ) Γ ( a - c + 1 ) w 6 ( z ) subscript 𝑤 3 𝑧 superscript 𝑒 𝑎 𝜋 imaginary-unit Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑏 𝑎 Euler-Gamma 𝑏 Euler-Gamma 𝑏 𝑐 1 subscript 𝑤 5 𝑧 superscript 𝑒 𝑏 𝜋 imaginary-unit Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑎 𝑏 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑐 1 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{3}(z)=e^{-a\pi\mathrm{i}}\frac{\Gamma\left(a+b% -c+1\right)\Gamma\left(b-a\right)}{\Gamma\left(b\right)\Gamma\left(b-c+1\right% )}w_{5}(z)+e^{-b\pi\mathrm{i}}\frac{\Gamma\left(a+b-c+1\right)\Gamma\left(a-b% \right)}{\Gamma\left(a\right)\Gamma\left(a-c+1\right)}w_{6}(z)}}
w_{3}(z) = e^{-a\pi\iunit}\frac{\EulerGamma@{a+b-c+1}\EulerGamma@{b-a}}{\EulerGamma@{b}\EulerGamma@{b-c+1}}w_{5}(z)+e^{-b\pi\iunit}\frac{\EulerGamma@{a+b-c+1}\EulerGamma@{a-b}}{\EulerGamma@{a}\EulerGamma@{a-c+1}}w_{6}(z)
( a + b - c + 1 ) > 0 , ( b - a ) > 0 , b > 0 , ( b - c + 1 ) > 0 , ( a - b ) > 0 , a > 0 , ( a - c + 1 ) > 0 formulae-sequence 𝑎 𝑏 𝑐 1 0 formulae-sequence 𝑏 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 𝑏 𝑐 1 0 formulae-sequence 𝑎 𝑏 0 formulae-sequence 𝑎 0 𝑎 𝑐 1 0 {\displaystyle{\displaystyle\Re(a+b-c+1)>0,\Re(b-a)>0,\Re b>0,\Re(b-c+1)>0,\Re% (a-b)>0,\Re a>0,\Re(a-c+1)>0}}
w[3](z) = exp(- a*Pi*I)*(GAMMA(a + b - c + 1)*GAMMA(b - a))/(GAMMA(b)*GAMMA(b - c + 1))*w[5](z)+ exp(- b*Pi*I)*(GAMMA(a + b - c + 1)*GAMMA(a - b))/(GAMMA(a)*GAMMA(a - c + 1))*w[6](z)
Subscript[w, 3][z] == Exp[- a*Pi*I]*Divide[Gamma[a + b - c + 1]*Gamma[b - a],Gamma[b]*Gamma[b - c + 1]]*Subscript[w, 5][z]+ Exp[- b*Pi*I]*Divide[Gamma[a + b - c + 1]*Gamma[a - b],Gamma[a]*Gamma[a - c + 1]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E28 w 4 ( z ) = e ( b - c ) π i Γ ( c - a - b + 1 ) Γ ( b - a ) Γ ( 1 - a ) Γ ( c - a ) w 5 ( z ) + e ( a - c ) π i Γ ( c - a - b + 1 ) Γ ( a - b ) Γ ( 1 - b ) Γ ( c - b ) w 6 ( z ) subscript 𝑤 4 𝑧 superscript 𝑒 𝑏 𝑐 𝜋 imaginary-unit Euler-Gamma 𝑐 𝑎 𝑏 1 Euler-Gamma 𝑏 𝑎 Euler-Gamma 1 𝑎 Euler-Gamma 𝑐 𝑎 subscript 𝑤 5 𝑧 superscript 𝑒 𝑎 𝑐 𝜋 imaginary-unit Euler-Gamma 𝑐 𝑎 𝑏 1 Euler-Gamma 𝑎 𝑏 Euler-Gamma 1 𝑏 Euler-Gamma 𝑐 𝑏 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{4}(z)=e^{(b-c)\pi\mathrm{i}}\frac{\Gamma\left(% c-a-b+1\right)\Gamma\left(b-a\right)}{\Gamma\left(1-a\right)\Gamma\left(c-a% \right)}w_{5}(z)+e^{(a-c)\pi\mathrm{i}}\frac{\Gamma\left(c-a-b+1\right)\Gamma% \left(a-b\right)}{\Gamma\left(1-b\right)\Gamma\left(c-b\right)}w_{6}(z)}}
w_{4}(z) = e^{(b-c)\pi\iunit}\frac{\EulerGamma@{c-a-b+1}\EulerGamma@{b-a}}{\EulerGamma@{1-a}\EulerGamma@{c-a}}w_{5}(z)+e^{(a-c)\pi\iunit}\frac{\EulerGamma@{c-a-b+1}\EulerGamma@{a-b}}{\EulerGamma@{1-b}\EulerGamma@{c-b}}w_{6}(z)
( c - a - b + 1 ) > 0 , ( b - a ) > 0 , ( 1 - a ) > 0 , ( c - a ) > 0 , ( a - b ) > 0 , ( 1 - b ) > 0 , ( c - b ) > 0 formulae-sequence 𝑐 𝑎 𝑏 1 0 formulae-sequence 𝑏 𝑎 0 formulae-sequence 1 𝑎 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑎 𝑏 0 formulae-sequence 1 𝑏 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re(c-a-b+1)>0,\Re(b-a)>0,\Re(1-a)>0,\Re(c-a)>0,% \Re(a-b)>0,\Re(1-b)>0,\Re(c-b)>0}}
w[4](z) = exp((b - c)*Pi*I)*(GAMMA(c - a - b + 1)*GAMMA(b - a))/(GAMMA(1 - a)*GAMMA(c - a))*w[5](z)+ exp((a - c)*Pi*I)*(GAMMA(c - a - b + 1)*GAMMA(a - b))/(GAMMA(1 - b)*GAMMA(c - b))*w[6](z)
Subscript[w, 4][z] == Exp[(b - c)*Pi*I]*Divide[Gamma[c - a - b + 1]*Gamma[b - a],Gamma[1 - a]*Gamma[c - a]]*Subscript[w, 5][z]+ Exp[(a - c)*Pi*I]*Divide[Gamma[c - a - b + 1]*Gamma[a - b],Gamma[1 - b]*Gamma[c - b]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E29 w 1 ( z ) = e b π i Γ ( c ) Γ ( a - c + 1 ) Γ ( a + b - c + 1 ) Γ ( c - b ) w 3 ( z ) + e ( b - c ) π i Γ ( c ) Γ ( a - c + 1 ) Γ ( b ) Γ ( a - b + 1 ) w 5 ( z ) subscript 𝑤 1 𝑧 superscript 𝑒 𝑏 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 𝑎 𝑐 1 Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑐 𝑏 subscript 𝑤 3 𝑧 superscript 𝑒 𝑏 𝑐 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 𝑎 𝑐 1 Euler-Gamma 𝑏 Euler-Gamma 𝑎 𝑏 1 subscript 𝑤 5 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{b\pi\mathrm{i}}\frac{\Gamma\left(c% \right)\Gamma\left(a-c+1\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(c-b% \right)}w_{3}(z)+e^{(b-c)\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(a% -c+1\right)}{\Gamma\left(b\right)\Gamma\left(a-b+1\right)}w_{5}(z)}}
w_{1}(z) = e^{b\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{a-c+1}}{\EulerGamma@{a+b-c+1}\EulerGamma@{c-b}}w_{3}(z)+e^{(b-c)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{a-c+1}}{\EulerGamma@{b}\EulerGamma@{a-b+1}}w_{5}(z)
c > 0 , ( a - c + 1 ) > 0 , ( a + b - c + 1 ) > 0 , ( c - b ) > 0 , b > 0 , ( a - b + 1 ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑎 𝑐 1 0 formulae-sequence 𝑎 𝑏 𝑐 1 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑏 0 𝑎 𝑏 1 0 {\displaystyle{\displaystyle\Re c>0,\Re(a-c+1)>0,\Re(a+b-c+1)>0,\Re(c-b)>0,\Re b% >0,\Re(a-b+1)>0}}
w[1](z) = exp(b*Pi*I)*(GAMMA(c)*GAMMA(a - c + 1))/(GAMMA(a + b - c + 1)*GAMMA(c - b))*w[3](z)+ exp((b - c)*Pi*I)*(GAMMA(c)*GAMMA(a - c + 1))/(GAMMA(b)*GAMMA(a - b + 1))*w[5](z)
Subscript[w, 1][z] == Exp[b*Pi*I]*Divide[Gamma[c]*Gamma[a - c + 1],Gamma[a + b - c + 1]*Gamma[c - b]]*Subscript[w, 3][z]+ Exp[(b - c)*Pi*I]*Divide[Gamma[c]*Gamma[a - c + 1],Gamma[b]*Gamma[a - b + 1]]*Subscript[w, 5][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E30 w 1 ( z ) = e a π i Γ ( c ) Γ ( b - c + 1 ) Γ ( a + b - c + 1 ) Γ ( c - a ) w 3 ( z ) + e ( a - c ) π i Γ ( c ) Γ ( b - c + 1 ) Γ ( a ) Γ ( b - a + 1 ) w 6 ( z ) subscript 𝑤 1 𝑧 superscript 𝑒 𝑎 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑐 𝑎 subscript 𝑤 3 𝑧 superscript 𝑒 𝑎 𝑐 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma 𝑎 Euler-Gamma 𝑏 𝑎 1 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{a\pi\mathrm{i}}\frac{\Gamma\left(c% \right)\Gamma\left(b-c+1\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(c-a% \right)}w_{3}(z)+e^{(a-c)\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(b% -c+1\right)}{\Gamma\left(a\right)\Gamma\left(b-a+1\right)}w_{6}(z)}}
w_{1}(z) = e^{a\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{b-c+1}}{\EulerGamma@{a+b-c+1}\EulerGamma@{c-a}}w_{3}(z)+e^{(a-c)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{b-c+1}}{\EulerGamma@{a}\EulerGamma@{b-a+1}}w_{6}(z)
c > 0 , ( b - c + 1 ) > 0 , ( a + b - c + 1 ) > 0 , ( c - a ) > 0 , a > 0 , ( b - a + 1 ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑏 𝑐 1 0 formulae-sequence 𝑎 𝑏 𝑐 1 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑎 0 𝑏 𝑎 1 0 {\displaystyle{\displaystyle\Re c>0,\Re(b-c+1)>0,\Re(a+b-c+1)>0,\Re(c-a)>0,\Re a% >0,\Re(b-a+1)>0}}
w[1](z) = exp(a*Pi*I)*(GAMMA(c)*GAMMA(b - c + 1))/(GAMMA(a + b - c + 1)*GAMMA(c - a))*w[3](z)+ exp((a - c)*Pi*I)*(GAMMA(c)*GAMMA(b - c + 1))/(GAMMA(a)*GAMMA(b - a + 1))*w[6](z)
Subscript[w, 1][z] == Exp[a*Pi*I]*Divide[Gamma[c]*Gamma[b - c + 1],Gamma[a + b - c + 1]*Gamma[c - a]]*Subscript[w, 3][z]+ Exp[(a - c)*Pi*I]*Divide[Gamma[c]*Gamma[b - c + 1],Gamma[a]*Gamma[b - a + 1]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E31 w 2 ( z ) = e ( b - c + 1 ) π i Γ ( 2 - c ) Γ ( a ) Γ ( a + b - c + 1 ) Γ ( 1 - b ) w 3 ( z ) + e ( b - c ) π i Γ ( 2 - c ) Γ ( a ) Γ ( a - b + 1 ) Γ ( b - c + 1 ) w 5 ( z ) subscript 𝑤 2 𝑧 superscript 𝑒 𝑏 𝑐 1 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 1 𝑏 subscript 𝑤 3 𝑧 superscript 𝑒 𝑏 𝑐 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 𝑏 𝑐 1 subscript 𝑤 5 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(b-c+1)\pi\mathrm{i}}\frac{\Gamma% \left(2-c\right)\Gamma\left(a\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(1-% b\right)}w_{3}(z)+e^{(b-c)\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma% \left(a\right)}{\Gamma\left(a-b+1\right)\Gamma\left(b-c+1\right)}w_{5}(z)}}
w_{2}(z) = e^{(b-c+1)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{a}}{\EulerGamma@{a+b-c+1}\EulerGamma@{1-b}}w_{3}(z)+e^{(b-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{a}}{\EulerGamma@{a-b+1}\EulerGamma@{b-c+1}}w_{5}(z)
( 2 - c ) > 0 , a > 0 , ( a + b - c + 1 ) > 0 , ( 1 - b ) > 0 , ( a - b + 1 ) > 0 , ( b - c + 1 ) > 0 formulae-sequence 2 𝑐 0 formulae-sequence 𝑎 0 formulae-sequence 𝑎 𝑏 𝑐 1 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑎 𝑏 1 0 𝑏 𝑐 1 0 {\displaystyle{\displaystyle\Re(2-c)>0,\Re a>0,\Re(a+b-c+1)>0,\Re(1-b)>0,\Re(a% -b+1)>0,\Re(b-c+1)>0}}
w[2](z) = exp((b - c + 1)*Pi*I)*(GAMMA(2 - c)*GAMMA(a))/(GAMMA(a + b - c + 1)*GAMMA(1 - b))*w[3](z)+ exp((b - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(a))/(GAMMA(a - b + 1)*GAMMA(b - c + 1))*w[5](z)
Subscript[w, 2][z] == Exp[(b - c + 1)*Pi*I]*Divide[Gamma[2 - c]*Gamma[a],Gamma[a + b - c + 1]*Gamma[1 - b]]*Subscript[w, 3][z]+ Exp[(b - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[a],Gamma[a - b + 1]*Gamma[b - c + 1]]*Subscript[w, 5][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E32 w 2 ( z ) = e ( a - c + 1 ) π i Γ ( 2 - c ) Γ ( b ) Γ ( a + b - c + 1 ) Γ ( 1 - a ) w 3 ( z ) + e ( a - c ) π i Γ ( 2 - c ) Γ ( b ) Γ ( b - a + 1 ) Γ ( a - c + 1 ) w 6 ( z ) subscript 𝑤 2 𝑧 superscript 𝑒 𝑎 𝑐 1 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑏 Euler-Gamma 𝑎 𝑏 𝑐 1 Euler-Gamma 1 𝑎 subscript 𝑤 3 𝑧 superscript 𝑒 𝑎 𝑐 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑏 Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 𝑎 𝑐 1 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(a-c+1)\pi\mathrm{i}}\frac{\Gamma% \left(2-c\right)\Gamma\left(b\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(1-% a\right)}w_{3}(z)+e^{(a-c)\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma% \left(b\right)}{\Gamma\left(b-a+1\right)\Gamma\left(a-c+1\right)}w_{6}(z)}}
w_{2}(z) = e^{(a-c+1)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{b}}{\EulerGamma@{a+b-c+1}\EulerGamma@{1-a}}w_{3}(z)+e^{(a-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{b}}{\EulerGamma@{b-a+1}\EulerGamma@{a-c+1}}w_{6}(z)
( 2 - c ) > 0 , b > 0 , ( a + b - c + 1 ) > 0 , ( 1 - a ) > 0 , ( b - a + 1 ) > 0 , ( a - c + 1 ) > 0 formulae-sequence 2 𝑐 0 formulae-sequence 𝑏 0 formulae-sequence 𝑎 𝑏 𝑐 1 0 formulae-sequence 1 𝑎 0 formulae-sequence 𝑏 𝑎 1 0 𝑎 𝑐 1 0 {\displaystyle{\displaystyle\Re(2-c)>0,\Re b>0,\Re(a+b-c+1)>0,\Re(1-a)>0,\Re(b% -a+1)>0,\Re(a-c+1)>0}}
w[2](z) = exp((a - c + 1)*Pi*I)*(GAMMA(2 - c)*GAMMA(b))/(GAMMA(a + b - c + 1)*GAMMA(1 - a))*w[3](z)+ exp((a - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(b))/(GAMMA(b - a + 1)*GAMMA(a - c + 1))*w[6](z)
Subscript[w, 2][z] == Exp[(a - c + 1)*Pi*I]*Divide[Gamma[2 - c]*Gamma[b],Gamma[a + b - c + 1]*Gamma[1 - a]]*Subscript[w, 3][z]+ Exp[(a - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[b],Gamma[b - a + 1]*Gamma[a - c + 1]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E33 w 1 ( z ) = e ( c - a ) π i Γ ( c ) Γ ( 1 - b ) Γ ( a ) Γ ( c - a - b + 1 ) w 4 ( z ) + e - a π i Γ ( c ) Γ ( 1 - b ) Γ ( a - b + 1 ) Γ ( c - a ) w 5 ( z ) subscript 𝑤 1 𝑧 superscript 𝑒 𝑐 𝑎 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 𝑏 Euler-Gamma 𝑎 Euler-Gamma 𝑐 𝑎 𝑏 1 subscript 𝑤 4 𝑧 superscript 𝑒 𝑎 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 𝑏 Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 𝑐 𝑎 subscript 𝑤 5 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{(c-a)\pi\mathrm{i}}\frac{\Gamma\left(% c\right)\Gamma\left(1-b\right)}{\Gamma\left(a\right)\Gamma\left(c-a-b+1\right)% }w_{4}(z)+e^{-a\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(1-b\right)}% {\Gamma\left(a-b+1\right)\Gamma\left(c-a\right)}w_{5}(z)}}
w_{1}(z) = e^{(c-a)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-b}}{\EulerGamma@{a}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-a\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-b}}{\EulerGamma@{a-b+1}\EulerGamma@{c-a}}w_{5}(z)
c > 0 , ( 1 - b ) > 0 , a > 0 , ( c - a - b + 1 ) > 0 , ( a - b + 1 ) > 0 , ( c - a ) > 0 formulae-sequence 𝑐 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑎 0 formulae-sequence 𝑐 𝑎 𝑏 1 0 formulae-sequence 𝑎 𝑏 1 0 𝑐 𝑎 0 {\displaystyle{\displaystyle\Re c>0,\Re(1-b)>0,\Re a>0,\Re(c-a-b+1)>0,\Re(a-b+% 1)>0,\Re(c-a)>0}}
w[1](z) = exp((c - a)*Pi*I)*(GAMMA(c)*GAMMA(1 - b))/(GAMMA(a)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- a*Pi*I)*(GAMMA(c)*GAMMA(1 - b))/(GAMMA(a - b + 1)*GAMMA(c - a))*w[5](z)
Subscript[w, 1][z] == Exp[(c - a)*Pi*I]*Divide[Gamma[c]*Gamma[1 - b],Gamma[a]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- a*Pi*I]*Divide[Gamma[c]*Gamma[1 - b],Gamma[a - b + 1]*Gamma[c - a]]*Subscript[w, 5][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E34 w 1 ( z ) = e ( c - b ) π i Γ ( c ) Γ ( 1 - a ) Γ ( b ) Γ ( c - a - b + 1 ) w 4 ( z ) + e - b π i Γ ( c ) Γ ( 1 - a ) Γ ( b - a + 1 ) Γ ( c - b ) w 6 ( z ) subscript 𝑤 1 𝑧 superscript 𝑒 𝑐 𝑏 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 𝑎 Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑎 𝑏 1 subscript 𝑤 4 𝑧 superscript 𝑒 𝑏 𝜋 imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 𝑎 Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 𝑐 𝑏 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{(c-b)\pi\mathrm{i}}\frac{\Gamma\left(% c\right)\Gamma\left(1-a\right)}{\Gamma\left(b\right)\Gamma\left(c-a-b+1\right)% }w_{4}(z)+e^{-b\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(1-a\right)}% {\Gamma\left(b-a+1\right)\Gamma\left(c-b\right)}w_{6}(z)}}
w_{1}(z) = e^{(c-b)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-a}}{\EulerGamma@{b}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-b\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-a}}{\EulerGamma@{b-a+1}\EulerGamma@{c-b}}w_{6}(z)
c > 0 , ( 1 - a ) > 0 , b > 0 , ( c - a - b + 1 ) > 0 , ( b - a + 1 ) > 0 , ( c - b ) > 0 formulae-sequence 𝑐 0 formulae-sequence 1 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 𝑐 𝑎 𝑏 1 0 formulae-sequence 𝑏 𝑎 1 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(1-a)>0,\Re b>0,\Re(c-a-b+1)>0,\Re(b-a+% 1)>0,\Re(c-b)>0}}
w[1](z) = exp((c - b)*Pi*I)*(GAMMA(c)*GAMMA(1 - a))/(GAMMA(b)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- b*Pi*I)*(GAMMA(c)*GAMMA(1 - a))/(GAMMA(b - a + 1)*GAMMA(c - b))*w[6](z)
Subscript[w, 1][z] == Exp[(c - b)*Pi*I]*Divide[Gamma[c]*Gamma[1 - a],Gamma[b]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- b*Pi*I]*Divide[Gamma[c]*Gamma[1 - a],Gamma[b - a + 1]*Gamma[c - b]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E35 w 2 ( z ) = e ( 1 - a ) π i Γ ( 2 - c ) Γ ( c - b ) Γ ( a - c + 1 ) Γ ( c - a - b + 1 ) w 4 ( z ) + e - a π i Γ ( 2 - c ) Γ ( c - b ) Γ ( a - b + 1 ) Γ ( 1 - a ) w 5 ( z ) subscript 𝑤 2 𝑧 superscript 𝑒 1 𝑎 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑎 𝑐 1 Euler-Gamma 𝑐 𝑎 𝑏 1 subscript 𝑤 4 𝑧 superscript 𝑒 𝑎 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 1 𝑎 subscript 𝑤 5 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(1-a)\pi\mathrm{i}}\frac{\Gamma\left(% 2-c\right)\Gamma\left(c-b\right)}{\Gamma\left(a-c+1\right)\Gamma\left(c-a-b+1% \right)}w_{4}(z)+e^{-a\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma\left(c-% b\right)}{\Gamma\left(a-b+1\right)\Gamma\left(1-a\right)}w_{5}(z)}}
w_{2}(z) = e^{(1-a)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-b}}{\EulerGamma@{a-c+1}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-a\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-b}}{\EulerGamma@{a-b+1}\EulerGamma@{1-a}}w_{5}(z)
( 2 - c ) > 0 , ( c - b ) > 0 , ( a - c + 1 ) > 0 , ( c - a - b + 1 ) > 0 , ( a - b + 1 ) > 0 , ( 1 - a ) > 0 formulae-sequence 2 𝑐 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑎 𝑐 1 0 formulae-sequence 𝑐 𝑎 𝑏 1 0 formulae-sequence 𝑎 𝑏 1 0 1 𝑎 0 {\displaystyle{\displaystyle\Re(2-c)>0,\Re(c-b)>0,\Re(a-c+1)>0,\Re(c-a-b+1)>0,% \Re(a-b+1)>0,\Re(1-a)>0}}
w[2](z) = exp((1 - a)*Pi*I)*(GAMMA(2 - c)*GAMMA(c - b))/(GAMMA(a - c + 1)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- a*Pi*I)*(GAMMA(2 - c)*GAMMA(c - b))/(GAMMA(a - b + 1)*GAMMA(1 - a))*w[5](z)
Subscript[w, 2][z] == Exp[(1 - a)*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - b],Gamma[a - c + 1]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- a*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - b],Gamma[a - b + 1]*Gamma[1 - a]]*Subscript[w, 5][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.10.E36 w 2 ( z ) = e ( 1 - b ) π i Γ ( 2 - c ) Γ ( c - a ) Γ ( b - c + 1 ) Γ ( c - a - b + 1 ) w 4 ( z ) + e - b π i Γ ( 2 - c ) Γ ( c - a ) Γ ( b - a + 1 ) Γ ( 1 - b ) w 6 ( z ) subscript 𝑤 2 𝑧 superscript 𝑒 1 𝑏 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma 𝑐 𝑎 𝑏 1 subscript 𝑤 4 𝑧 superscript 𝑒 𝑏 𝜋 imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑏 𝑎 1 Euler-Gamma 1 𝑏 subscript 𝑤 6 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(1-b)\pi\mathrm{i}}\frac{\Gamma\left(% 2-c\right)\Gamma\left(c-a\right)}{\Gamma\left(b-c+1\right)\Gamma\left(c-a-b+1% \right)}w_{4}(z)+e^{-b\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma\left(c-% a\right)}{\Gamma\left(b-a+1\right)\Gamma\left(1-b\right)}w_{6}(z)}}
w_{2}(z) = e^{(1-b)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-a}}{\EulerGamma@{b-c+1}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-b\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-a}}{\EulerGamma@{b-a+1}\EulerGamma@{1-b}}w_{6}(z)
( 2 - c ) > 0 , ( c - a ) > 0 , ( b - c + 1 ) > 0 , ( c - a - b + 1 ) > 0 , ( b - a + 1 ) > 0 , ( 1 - b ) > 0 formulae-sequence 2 𝑐 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑏 𝑐 1 0 formulae-sequence 𝑐 𝑎 𝑏 1 0 formulae-sequence 𝑏 𝑎 1 0 1 𝑏 0 {\displaystyle{\displaystyle\Re(2-c)>0,\Re(c-a)>0,\Re(b-c+1)>0,\Re(c-a-b+1)>0,% \Re(b-a+1)>0,\Re(1-b)>0}}
w[2](z) = exp((1 - b)*Pi*I)*(GAMMA(2 - c)*GAMMA(c - a))/(GAMMA(b - c + 1)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- b*Pi*I)*(GAMMA(2 - c)*GAMMA(c - a))/(GAMMA(b - a + 1)*GAMMA(1 - b))*w[6](z)
Subscript[w, 2][z] == Exp[(1 - b)*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - a],Gamma[b - c + 1]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- b*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - a],Gamma[b - a + 1]*Gamma[1 - b]]*Subscript[w, 6][z]
Failure Failure Manual Skip! Skipped - Because timed out
15.11.E2 a 1 + a 2 + b 1 + b 2 + c 1 + c 2 = 1 subscript 𝑎 1 subscript 𝑎 2 subscript 𝑏 1 subscript 𝑏 2 subscript 𝑐 1 subscript 𝑐 2 1 {\displaystyle{\displaystyle a_{1}+a_{2}+b_{1}+b_{2}+c_{1}+c_{2}=1}}
a_{1}+a_{2}+b_{1}+b_{2}+c_{1}+c_{2} = 1

a[1]+ a[2]+ b[1]+ b[2]+ c[1]+ c[2] = 1
Subscript[a, 1]+ Subscript[a, 2]+ Subscript[b, 1]+ Subscript[b, 2]+ Subscript[c, 1]+ Subscript[c, 2] == 1
Skipped - no semantic math Skipped - no semantic math - -
15.11.E5 t = ( κ z + λ ) / ( μ z + ν ) 𝑡 𝜅 𝑧 𝜆 𝜇 𝑧 𝜈 {\displaystyle{\displaystyle t=\ifrac{(\kappa z+\lambda)}{(\mu z+\nu)}}}
t = \ifrac{(\kappa z+\lambda)}{(\mu z+\nu)}

t = (kappa*z + lambda)/(mu*z + nu)
t == Divide[\[Kappa]*z + \[Lambda],\[Mu]*z + \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
15.12.E1 α + = arctan ( ph z - ph ( 1 - z ) - π ln | 1 - z - 1 | ) subscript 𝛼 phase 𝑧 phase 1 𝑧 𝜋 1 superscript 𝑧 1 {\displaystyle{\displaystyle\alpha_{+}=\operatorname{arctan}\left(\frac{% \operatorname{ph}z-\operatorname{ph}\left(1-z\right)-\pi}{\ln|1-z^{-1}|}\right% )}}
\alpha_{+} = \atan@{\frac{\phase@@{z}-\phase@{1-z}-\pi}{\ln@@{|1-z^{-1}|}}}

alpha[+] = arctan((argument(z)- argument(1 - z)- Pi)/(ln(abs(1 - (z)^(- 1)))))
Subscript[\[Alpha], +] == ArcTan[Divide[Arg[z]- Arg[1 - z]- Pi,Log[Abs[1 - (z)^(- 1)]]]]
Error Failure - Error
15.12.E1 α - = arctan ( ph z - ph ( 1 - z ) + π ln | 1 - z - 1 | ) subscript 𝛼 phase 𝑧 phase 1 𝑧 𝜋 1 superscript 𝑧 1 {\displaystyle{\displaystyle\alpha_{-}=\operatorname{arctan}\left(\frac{% \operatorname{ph}z-\operatorname{ph}\left(1-z\right)+\pi}{\ln|1-z^{-1}|}\right% )}}
\alpha_{-} = \atan@{\frac{\phase@@{z}-\phase@{1-z}+\pi}{\ln@@{|1-z^{-1}|}}}

alpha[-] = arctan((argument(z)- argument(1 - z)+ Pi)/(ln(abs(1 - (z)^(- 1)))))
Subscript[\[Alpha], -] == ArcTan[Divide[Arg[z]- Arg[1 - z]+ Pi,Log[Abs[1 - (z)^(- 1)]]]]
Error Failure - Error
15.12.E4 ( e t - 1 t ) b - 1 e t ( 1 - c ) ( 1 - z + z e - t ) - a = s = 0 q s ( z ) t s superscript superscript 𝑒 𝑡 1 𝑡 𝑏 1 superscript 𝑒 𝑡 1 𝑐 superscript 1 𝑧 𝑧 superscript 𝑒 𝑡 𝑎 superscript subscript 𝑠 0 subscript 𝑞 𝑠 𝑧 superscript 𝑡 𝑠 {\displaystyle{\displaystyle\left(\frac{e^{t}-1}{t}\right)^{b-1}e^{t(1-c)}% \left(1-z+ze^{-t}\right)^{-a}=\sum_{s=0}^{\infty}q_{s}(z)t^{s}}}
\left(\frac{e^{t}-1}{t}\right)^{b-1}e^{t(1-c)}\left(1-z+ze^{-t}\right)^{-a} = \sum_{s=0}^{\infty}q_{s}(z)t^{s}

((exp(t)- 1)/(t))^(b - 1)* exp(t*(1 - c))*(1 - z + z*exp(- t))^(- a) = sum(q[s](z)* (t)^(s), s = 0..infinity)
(Divide[Exp[t]- 1,t])^(b - 1)* Exp[t*(1 - c)]*(1 - z + z*Exp[- t])^(- a) == Sum[Subscript[q, s][z]* (t)^(s), {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
15.12.E6 ζ = arccosh z 𝜁 hyperbolic-inverse-cosine 𝑧 {\displaystyle{\displaystyle\zeta=\operatorname{arccosh}z}}
\zeta = \acosh@@{z}

zeta = arccosh(z)
\[Zeta] == ArcCosh[z]
Failure Failure
Failed [70 / 70]
Result: .2075464554-.2853981632*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}

Result: -1.158478949+.806272408e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.1612451656432845, -0.8901042143273741]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ζ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.5217675362489347, -0.7070915124351547]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ζ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.12.E8 α = ( - 2 ln ( 1 - ( z - 1 z + 1 ) 2 ) ) 1 / 2 𝛼 superscript 2 1 superscript 𝑧 1 𝑧 1 2 1 2 {\displaystyle{\displaystyle\alpha=\left(-2\ln\left(1-\left(\frac{z-1}{z+1}% \right)^{2}\right)\right)^{1/2}}}
\alpha = \left(-2\ln@{1-\left(\frac{z-1}{z+1}\right)^{2}}\right)^{1/2}

alpha = (- 2*ln(1 -((z - 1)/(z + 1))^(2)))^(1/2)
\[Alpha] == (- 2*Log[1 -(Divide[z - 1,z + 1])^(2)])^(1/2)
Failure Failure
Failed [21 / 21]
Result: 1.500000000-.3723881428*I
Test Values: {alpha = 3/2, z = 1/2*3^(1/2)+1/2*I}

Result: 1.500000000-1.665109222*I
Test Values: {alpha = 3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[1.0067817778628907, 0.36121951329018404]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[α, 1.5]}

Result: Complex[0.006781777862890637, 0.36121951329018404]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[α, 0.5]}

... skip entries to safe data
15.12.E10 ζ = arccosh ( 1 4 z - 1 ) 𝜁 hyperbolic-inverse-cosine 1 4 𝑧 1 {\displaystyle{\displaystyle\zeta=\operatorname{arccosh}\left(\tfrac{1}{4}z-1% \right)}}
\zeta = \acosh@{\tfrac{1}{4}z-1}

zeta = arccosh((1)/(4)*z - 1)
\[Zeta] == ArcCosh[Divide[1,4]*z - 1]
Failure Failure
Failed [70 / 70]
Result: .6717322583-1.947968998*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}

Result: -.6942931457-1.581943594*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.29977340809145847, -2.404910564859421]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ζ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.3832392938007607, -2.221897862967202]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ζ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.12.E11 β = ( - 3 2 ζ + 9 4 ln ( 2 + e ζ 2 + e - ζ ) ) 1 / 3 𝛽 superscript 3 2 𝜁 9 4 2 superscript 𝑒 𝜁 2 superscript 𝑒 𝜁 1 3 {\displaystyle{\displaystyle\beta=\left(-\frac{3}{2}\zeta+\frac{9}{4}\ln\left(% \frac{2+e^{\zeta}}{2+e^{-\zeta}}\right)\right)^{1/3}}}
\beta = \left(-\frac{3}{2}\zeta+\frac{9}{4}\ln@{\frac{2+e^{\zeta}}{2+e^{-\zeta}}}\right)^{1/3}

beta = (-(3)/(2)*zeta +(9)/(4)*ln((2 + exp(zeta))/(2 + exp(- zeta))))^(1/3)
\[Beta] == (-Divide[3,2]*\[Zeta]+Divide[9,4]*Log[Divide[2 + Exp[\[Zeta]],2 + Exp[- \[Zeta]]]])^(1/3)
Failure Failure
Failed [30 / 30]
Result: 1.169986459-.1804633349*I
Test Values: {beta = 3/2, zeta = 1/2*3^(1/2)+1/2*I}

Result: 1.113419726-.9637472295e-2*I
Test Values: {beta = 3/2, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[1.3347889019926584, -0.09407633084828147]
Test Values: {Rule[β, 1.5], Rule[ζ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.308560321923405, -0.0011617388335202368]
Test Values: {Rule[β, 1.5], Rule[ζ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.12#Ex1 a 0 ( ζ ) = 1 2 G 0 ( β ) + 1 2 G 0 ( - β ) subscript 𝑎 0 𝜁 1 2 subscript 𝐺 0 𝛽 1 2 subscript 𝐺 0 𝛽 {\displaystyle{\displaystyle a_{0}(\zeta)=\tfrac{1}{2}G_{0}(\beta)+\tfrac{1}{2% }G_{0}(-\beta)}}
a_{0}(\zeta) = \tfrac{1}{2}G_{0}(\beta)+\tfrac{1}{2}G_{0}(-\beta)

a[0](zeta) = (1)/(2)*G[0](beta)+(1)/(2)*G[0](- beta)
Subscript[a, 0][\[Zeta]] == Divide[1,2]*Subscript[G, 0][\[Beta]]+Divide[1,2]*Subscript[G, 0][- \[Beta]]
Skipped - no semantic math Skipped - no semantic math - -
15.12#Ex2 a 1 ( ζ ) = ( 1 2 G 0 ( β ) - 1 2 G 0 ( - β ) ) / β subscript 𝑎 1 𝜁 1 2 subscript 𝐺 0 𝛽 1 2 subscript 𝐺 0 𝛽 𝛽 {\displaystyle{\displaystyle a_{1}(\zeta)=\left(\tfrac{1}{2}G_{0}(\beta)-% \tfrac{1}{2}G_{0}(-\beta)\right)/\beta}}
a_{1}(\zeta) = \left(\tfrac{1}{2}G_{0}(\beta)-\tfrac{1}{2}G_{0}(-\beta)\right)/\beta

a[1](zeta) = ((1)/(2)*G[0](beta)-(1)/(2)*G[0](- beta))/beta
Subscript[a, 1][\[Zeta]] == (Divide[1,2]*Subscript[G, 0][\[Beta]]-Divide[1,2]*Subscript[G, 0][- \[Beta]])/\[Beta]
Skipped - no semantic math Skipped - no semantic math - -
15.12.E13 G 0 ( + β ) = ( 2 + e + ζ ) c - b - ( 1 / 2 ) ( 1 + e + ζ ) a - c + ( 1 / 2 ) ( z - 1 - e + ζ ) - a + ( 1 / 2 ) β e ζ - e - ζ subscript 𝐺 0 𝛽 superscript 2 superscript 𝑒 𝜁 𝑐 𝑏 1 2 superscript 1 superscript 𝑒 𝜁 𝑎 𝑐 1 2 superscript 𝑧 1 superscript 𝑒 𝜁 𝑎 1 2 𝛽 superscript 𝑒 𝜁 superscript 𝑒 𝜁 {\displaystyle{\displaystyle G_{0}(+\beta)=\left(2+e^{+\zeta}\right)^{c-b-(% \ifrac{1}{2})}\left(1+e^{+\zeta}\right)^{a-c+(\ifrac{1}{2})}\left(z-1-e^{+% \zeta}\right)^{-a+(\ifrac{1}{2})}\sqrt{\frac{\beta}{e^{\zeta}-e^{-\zeta}}}}}
G_{0}(+\beta) = \left(2+e^{+\zeta}\right)^{c-b-(\ifrac{1}{2})}\left(1+e^{+\zeta}\right)^{a-c+(\ifrac{1}{2})}\left(z-1-e^{+\zeta}\right)^{-a+(\ifrac{1}{2})}\sqrt{\frac{\beta}{e^{\zeta}-e^{-\zeta}}}

G[0](+ beta) = (2 + exp(+ zeta))^(c - b -((1)/(2)))*(1 + exp(+ zeta))^(a - c +((1)/(2)))*(z - 1 - exp(+ zeta))^(- a +((1)/(2)))*sqrt((beta)/(exp(zeta)- exp(- zeta)))
Subscript[G, 0][+ \[Beta]] == (2 + Exp[+ \[Zeta]])^(c - b -(Divide[1,2]))*(1 + Exp[+ \[Zeta]])^(a - c +(Divide[1,2]))*(z - 1 - Exp[+ \[Zeta]])^(- a +(Divide[1,2]))*Sqrt[Divide[\[Beta],Exp[\[Zeta]]- Exp[- \[Zeta]]]]
Skipped - no semantic math Skipped - no semantic math - -
15.14.E1 0 x s - 1 𝐅 ( a , b c ; - x ) d x = Γ ( s ) Γ ( a - s ) Γ ( b - s ) Γ ( a ) Γ ( b ) Γ ( c - s ) superscript subscript 0 superscript 𝑥 𝑠 1 scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 𝑥 𝑥 Euler-Gamma 𝑠 Euler-Gamma 𝑎 𝑠 Euler-Gamma 𝑏 𝑠 Euler-Gamma 𝑎 Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑠 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{s-1}\mathbf{F}\left({a,b\atop c% };-x\right)\mathrm{d}x=\frac{\Gamma\left(s\right)\Gamma\left(a-s\right)\Gamma% \left(b-s\right)}{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(c-s% \right)}}}
\int_{0}^{\infty}x^{s-1}\hyperOlverF@@{a}{b}{c}{-x}\diff{x} = \frac{\EulerGamma@{s}\EulerGamma@{a-s}\EulerGamma@{b-s}}{\EulerGamma@{a}\EulerGamma@{b}\EulerGamma@{c-s}}
min ( a > s , b ) > s , s > 0 , ( a - s ) > 0 , ( b - s ) > 0 , a > 0 , b > 0 , ( c - s ) > 0 , | ( - x ) | < 1 , ( c + s ) > 0 formulae-sequence 𝑎 𝑠 𝑏 𝑠 formulae-sequence 𝑠 0 formulae-sequence 𝑎 𝑠 0 formulae-sequence 𝑏 𝑠 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 𝑐 𝑠 0 formulae-sequence 𝑥 1 𝑐 𝑠 0 {\displaystyle{\displaystyle\min(\Re a>\Re s,\Re b)>\Re s,\Re s>0,\Re(a-s)>0,% \Re(b-s)>0,\Re a>0,\Re b>0,\Re(c-s)>0,|(-x)|<1,\Re(c+s)>0}}
int((x)^(s - 1)* hypergeom([a, b], [c], - x)/GAMMA(c), x = 0..infinity) = (GAMMA(s)*GAMMA(a - s)*GAMMA(b - s))/(GAMMA(a)*GAMMA(b)*GAMMA(c - s))
Integrate[(x)^(s - 1)* Hypergeometric2F1Regularized[a, b, c, - x], {x, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[s]*Gamma[a - s]*Gamma[b - s],Gamma[a]*Gamma[b]*Gamma[c - s]]
Successful Aborted - Skipped - Because timed out
15.15.E1 𝐅 ( a , b c ; 1 z ) = ( 1 - z 0 z ) - a s = 0 ( a ) s s ! 𝐅 ( - s , b c ; 1 z 0 ) ( 1 - z z 0 ) - s scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 1 𝑧 superscript 1 subscript 𝑧 0 𝑧 𝑎 superscript subscript 𝑠 0 subscript 𝑎 𝑠 𝑠 scaled-hypergeometric-bold-F 𝑠 𝑏 𝑐 1 subscript 𝑧 0 superscript 1 𝑧 subscript 𝑧 0 𝑠 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};\frac{1}{z}\right)=% \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*% \mathbf{F}\left({-s,b\atop c};\frac{1}{z_{0}}\right)\left(1-\frac{z}{z_{0}}% \right)^{-s}}}
\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}

hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)
Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out
15.16.E1 F ( a , b c - 1 2 ; z ) F ( c - a , c - b c + 1 2 ; z ) = s = 0 ( c ) s ( c + 1 2 ) s A s z s Gauss-hypergeometric-F 𝑎 𝑏 𝑐 1 2 𝑧 Gauss-hypergeometric-F 𝑐 𝑎 𝑐 𝑏 𝑐 1 2 𝑧 superscript subscript 𝑠 0 Pochhammer 𝑐 𝑠 Pochhammer 𝑐 1 2 𝑠 subscript 𝐴 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle F\left({a,b\atop c-\frac{1}{2}};z\right)F\left({c% -a,c-b\atop c+\frac{1}{2}};z\right)=\sum_{s=0}^{\infty}\frac{{\left(c\right)_{% s}}}{{\left(c+\frac{1}{2}\right)_{s}}}A_{s}z^{s}}}
\hyperF@@{a}{b}{c-\frac{1}{2}}{z}\hyperF@@{c-a}{c-b}{c+\frac{1}{2}}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{c}{s}}{\Pochhammersym{c+\frac{1}{2}}{s}}A_{s}z^{s}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
hypergeom([a, b], [c -(1)/(2)], z)*hypergeom([c - a, c - b], [c +(1)/(2)], z) = sum((pochhammer(c, s))/(pochhammer(c +(1)/(2), s))*A[s]*(z)^(s), s = 0..infinity)
Hypergeometric2F1[a, b, c -Divide[1,2], z]*Hypergeometric2F1[c - a, c - b, c +Divide[1,2], z] == Sum[Divide[Pochhammer[c, s],Pochhammer[c +Divide[1,2], s]]*Subscript[A, s]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out
15.16.E2 ( 1 - z ) a + b - c F ( 2 a , 2 b ; 2 c - 1 ; z ) = s = 0 A s z s superscript 1 𝑧 𝑎 𝑏 𝑐 Gauss-hypergeometric-F 2 𝑎 2 𝑏 2 𝑐 1 𝑧 superscript subscript 𝑠 0 subscript 𝐴 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle(1-z)^{a+b-c}F\left(2a,2b;2c-1;z\right)=\sum_{s=0}% ^{\infty}A_{s}z^{s}}}
(1-z)^{a+b-c}\hyperF@{2a}{2b}{2c-1}{z} = \sum_{s=0}^{\infty}A_{s}z^{s}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
(1 - z)^(a + b - c)* hypergeom([2*a, 2*b], [2*c - 1], z) = sum(A[s]*(z)^(s), s = 0..infinity)
(1 - z)^(a + b - c)* Hypergeometric2F1[2*a, 2*b, 2*c - 1, z] == Sum[Subscript[A, s]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [300 / 300]
Result: -1.113332374-1.*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2, A[s] = 1/2*3^(1/2)+1/2*I}

Result: 1.618718434-1.732050808*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2, A[s] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.20011980854170835, -0.8439394617218601]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[A, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.3278316576066613, -0.6694818315348507]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[A, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.16.E3 F ( a , b c ; z ) F ( a , b c ; ζ ) = s = 0 ( a ) s ( b ) s ( c - a ) s ( c - b ) s ( c ) s ( c ) 2 s s ! ( z ζ ) s F ( a + s , b + s c + 2 s ; z + ζ - z ζ ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝜁 superscript subscript 𝑠 0 Pochhammer 𝑎 𝑠 Pochhammer 𝑏 𝑠 Pochhammer 𝑐 𝑎 𝑠 Pochhammer 𝑐 𝑏 𝑠 Pochhammer 𝑐 𝑠 Pochhammer 𝑐 2 𝑠 𝑠 superscript 𝑧 𝜁 𝑠 Gauss-hypergeometric-F 𝑎 𝑠 𝑏 𝑠 𝑐 2 𝑠 𝑧 𝜁 𝑧 𝜁 {\displaystyle{\displaystyle F\left({a,b\atop c};z\right)F\left({a,b\atop c};% \zeta\right)=\sum_{s=0}^{\infty}\frac{{\left(a\right)_{s}}{\left(b\right)_{s}}% {\left(c-a\right)_{s}}{\left(c-b\right)_{s}}}{{\left(c\right)_{s}}{\left(c% \right)_{2s}}s!}\left(z\zeta\right)^{s}F\left({a+s,b+s\atop c+2s};z+\zeta-z% \zeta\right)}}
\hyperF@@{a}{b}{c}{z}\hyperF@@{a}{b}{c}{\zeta} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}\Pochhammersym{b}{s}\Pochhammersym{c-a}{s}\Pochhammersym{c-b}{s}}{\Pochhammersym{c}{s}\Pochhammersym{c}{2s}s!}\left(z\zeta\right)^{s}\hyperF@@{a+s}{b+s}{c+2s}{z+\zeta-z\zeta}
| z | < 1 , | ζ | < 1 , | z + ζ - z ζ | < 1 formulae-sequence 𝑧 1 formulae-sequence 𝜁 1 𝑧 𝜁 𝑧 𝜁 1 {\displaystyle{\displaystyle|z|<1,|\zeta|<1,|z+\zeta-z\zeta|<1}}
hypergeom([a, b], [c], z)*hypergeom([a, b], [c], zeta) = sum((pochhammer(a, s)*pochhammer(b, s)*pochhammer(c - a, s)*pochhammer(c - b, s))/(pochhammer(c, s)*pochhammer(c, 2*s)*factorial(s))*(z*zeta)^(s)* hypergeom([a + s, b + s], [c + 2*s], z + zeta - z*zeta), s = 0..infinity)
Hypergeometric2F1[a, b, c, z]*Hypergeometric2F1[a, b, c, \[Zeta]] == Sum[Divide[Pochhammer[a, s]*Pochhammer[b, s]*Pochhammer[c - a, s]*Pochhammer[c - b, s],Pochhammer[c, s]*Pochhammer[c, 2*s]*(s)!]*(z*\[Zeta])^(s)* Hypergeometric2F1[a + s, b + s, c + 2*s, z + \[Zeta]- z*\[Zeta]], {s, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out
15.16.E4 F ( a , b c ; z ) F ( - a , - b - c ; z ) + a b ( a - c ) ( b - c ) c 2 ( 1 - c 2 ) z 2 F ( 1 + a , 1 + b 2 + c ; z ) F ( 1 - a , 1 - b 2 - c ; z ) = 1 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 𝑎 𝑏 𝑎 𝑐 𝑏 𝑐 superscript 𝑐 2 1 superscript 𝑐 2 superscript 𝑧 2 Gauss-hypergeometric-F 1 𝑎 1 𝑏 2 𝑐 𝑧 Gauss-hypergeometric-F 1 𝑎 1 𝑏 2 𝑐 𝑧 1 {\displaystyle{\displaystyle F\left({a,b\atop c};z\right)F\left({-a,-b\atop-c}% ;z\right)+\frac{ab(a-c)(b-c)}{c^{2}(1-c^{2})}z^{2}F\left({1+a,1+b\atop 2+c};z% \right)F\left({1-a,1-b\atop 2-c};z\right)=1}}
\hyperF@@{a}{b}{c}{z}\hyperF@@{-a}{-b}{-c}{z}+\frac{ab(a-c)(b-c)}{c^{2}(1-c^{2})}z^{2}\hyperF@@{1+a}{1+b}{2+c}{z}\hyperF@@{1-a}{1-b}{2-c}{z} = 1

hypergeom([a, b], [c], z)*hypergeom([- a, - b], [- c], z)+(a*b*(a - c)*(b - c))/((c)^(2)*(1 - (c)^(2)))*(z)^(2)* hypergeom([1 + a, 1 + b], [2 + c], z)*hypergeom([1 - a, 1 - b], [2 - c], z) = 1
Hypergeometric2F1[a, b, c, z]*Hypergeometric2F1[- a, - b, - c, z]+Divide[a*b*(a - c)*(b - c),(c)^(2)*(1 - (c)^(2))]*(z)^(2)* Hypergeometric2F1[1 + a, 1 + b, 2 + c, z]*Hypergeometric2F1[1 - a, 1 - b, 2 - c, z] == 1
Failure Failure Skipped - Because timed out
Failed [98 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.16.E5 F ( 1 2 + λ , - 1 2 - ν 1 + λ + μ ; z ) F ( 1 2 - λ , 1 2 + ν 1 + ν + μ ; 1 - z ) + F ( 1 2 + λ , 1 2 - ν 1 + λ + μ ; z ) F ( - 1 2 - λ , 1 2 + ν 1 + ν + μ ; 1 - z ) - F ( 1 2 + λ , 1 2 - ν 1 + λ + μ ; z ) F ( 1 2 - λ , 1 2 + ν 1 + ν + μ ; 1 - z ) = Γ ( 1 + λ + μ ) Γ ( 1 + ν + μ ) Γ ( λ + μ + ν + 3 2 ) Γ ( 1 2 + ν ) Gauss-hypergeometric-F 1 2 𝜆 1 2 𝜈 1 𝜆 𝜇 𝑧 Gauss-hypergeometric-F 1 2 𝜆 1 2 𝜈 1 𝜈 𝜇 1 𝑧 Gauss-hypergeometric-F 1 2 𝜆 1 2 𝜈 1 𝜆 𝜇 𝑧 Gauss-hypergeometric-F 1 2 𝜆 1 2 𝜈 1 𝜈 𝜇 1 𝑧 Gauss-hypergeometric-F 1 2 𝜆 1 2 𝜈 1 𝜆 𝜇 𝑧 Gauss-hypergeometric-F 1 2 𝜆 1 2 𝜈 1 𝜈 𝜇 1 𝑧 Euler-Gamma 1 𝜆 𝜇 Euler-Gamma 1 𝜈 𝜇 Euler-Gamma 𝜆 𝜇 𝜈 3 2 Euler-Gamma 1 2 𝜈 {\displaystyle{\displaystyle F\left({\frac{1}{2}+\lambda,-\frac{1}{2}-\nu\atop 1% +\lambda+\mu};z\right)F\left({\frac{1}{2}-\lambda,\frac{1}{2}+\nu\atop 1+\nu+% \mu};1-z\right)+F\left({\frac{1}{2}+\lambda,\frac{1}{2}-\nu\atop 1+\lambda+\mu% };z\right)F\left({-\frac{1}{2}-\lambda,\frac{1}{2}+\nu\atop 1+\nu+\mu};1-z% \right)-F\left({\frac{1}{2}+\lambda,\frac{1}{2}-\nu\atop 1+\lambda+\mu};z% \right)F\left({\frac{1}{2}-\lambda,\frac{1}{2}+\nu\atop 1+\nu+\mu};1-z\right)=% \frac{\Gamma\left(1+\lambda+\mu\right)\Gamma\left(1+\nu+\mu\right)}{\Gamma% \left(\lambda+\mu+\nu+\frac{3}{2}\right)\Gamma\left(\frac{1}{2}+\nu\right)}}}
\hyperF@@{\frac{1}{2}+\lambda}{-\frac{1}{2}-\nu}{1+\lambda+\mu}{z}\hyperF@@{\frac{1}{2}-\lambda}{\frac{1}{2}+\nu}{1+\nu+\mu}{1-z}+\hyperF@@{\frac{1}{2}+\lambda}{\frac{1}{2}-\nu}{1+\lambda+\mu}{z}\hyperF@@{-\frac{1}{2}-\lambda}{\frac{1}{2}+\nu}{1+\nu+\mu}{1-z}-\hyperF@@{\frac{1}{2}+\lambda}{\frac{1}{2}-\nu}{1+\lambda+\mu}{z}\hyperF@@{\frac{1}{2}-\lambda}{\frac{1}{2}+\nu}{1+\nu+\mu}{1-z} = \frac{\EulerGamma@{1+\lambda+\mu}\EulerGamma@{1+\nu+\mu}}{\EulerGamma@{\lambda+\mu+\nu+\frac{3}{2}}\EulerGamma@{\frac{1}{2}+\nu}}
| ph z | < π , | ph ( 1 - z ) | < π , ( 1 + λ + μ ) > 0 , ( 1 + ν + μ ) > 0 , ( λ + μ + ν + 3 2 ) > 0 , ( 1 2 + ν ) > 0 formulae-sequence phase 𝑧 𝜋 formulae-sequence phase 1 𝑧 𝜋 formulae-sequence 1 𝜆 𝜇 0 formulae-sequence 1 𝜈 𝜇 0 formulae-sequence 𝜆 𝜇 𝜈 3 2 0 1 2 𝜈 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re(1+\lambda+\mu)>0,\Re(1+\nu+\mu)>0,\Re(\lambda+\mu+\nu+\frac% {3}{2})>0,\Re(\frac{1}{2}+\nu)>0}}
hypergeom([(1)/(2)+ lambda, -(1)/(2)- nu], [1 + lambda + mu], z)*hypergeom([(1)/(2)- lambda, (1)/(2)+ nu], [1 + nu + mu], 1 - z)+ hypergeom([(1)/(2)+ lambda, (1)/(2)- nu], [1 + lambda + mu], z)*hypergeom([-(1)/(2)- lambda, (1)/(2)+ nu], [1 + nu + mu], 1 - z)- hypergeom([(1)/(2)+ lambda, (1)/(2)- nu], [1 + lambda + mu], z)*hypergeom([(1)/(2)- lambda, (1)/(2)+ nu], [1 + nu + mu], 1 - z) = (GAMMA(1 + lambda + mu)*GAMMA(1 + nu + mu))/(GAMMA(lambda + mu + nu +(3)/(2))*GAMMA((1)/(2)+ nu))
Hypergeometric2F1[Divide[1,2]+ \[Lambda], -Divide[1,2]- \[Nu], 1 + \[Lambda]+ \[Mu], z]*Hypergeometric2F1[Divide[1,2]- \[Lambda], Divide[1,2]+ \[Nu], 1 + \[Nu]+ \[Mu], 1 - z]+ Hypergeometric2F1[Divide[1,2]+ \[Lambda], Divide[1,2]- \[Nu], 1 + \[Lambda]+ \[Mu], z]*Hypergeometric2F1[-Divide[1,2]- \[Lambda], Divide[1,2]+ \[Nu], 1 + \[Nu]+ \[Mu], 1 - z]- Hypergeometric2F1[Divide[1,2]+ \[Lambda], Divide[1,2]- \[Nu], 1 + \[Lambda]+ \[Mu], z]*Hypergeometric2F1[Divide[1,2]- \[Lambda], Divide[1,2]+ \[Nu], 1 + \[Nu]+ \[Mu], 1 - z] == Divide[Gamma[1 + \[Lambda]+ \[Mu]]*Gamma[1 + \[Nu]+ \[Mu]],Gamma[\[Lambda]+ \[Mu]+ \[Nu]+Divide[3,2]]*Gamma[Divide[1,2]+ \[Nu]]]
Failure Failure Skipped - Because timed out
Failed [251 / 300]
Result: Complex[0.3564253165633178, -0.5060695815565636]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ν, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

Result: Complex[0.011198613289511883, 0.30916385360889426]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ν, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

... skip entries to safe data