Painlevé Transcendents - 32.5 Integral Equations

From testwiki
Revision as of 17:56, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
32.5.E1 K ( z , ζ ) = k Ai ( z + ζ 2 ) + k 2 4 z z K ( z , s ) Ai ( s + t 2 ) Ai ( t + ζ 2 ) d s d t 𝐾 𝑧 𝜁 𝑘 Airy-Ai 𝑧 𝜁 2 superscript 𝑘 2 4 superscript subscript 𝑧 superscript subscript 𝑧 𝐾 𝑧 𝑠 Airy-Ai 𝑠 𝑡 2 Airy-Ai 𝑡 𝜁 2 𝑠 𝑡 {\displaystyle{\displaystyle K(z,\zeta)=k\mathrm{Ai}\left(\frac{z+\zeta}{2}% \right)+\frac{k^{2}}{4}\*\int_{z}^{\infty}\!\!\!\int_{z}^{\infty}K(z,s)\mathrm% {Ai}\left(\frac{s+t}{2}\right)\mathrm{Ai}\left(\frac{t+\zeta}{2}\right)\mathrm% {d}s\mathrm{d}t}}
K(z,\zeta) = k\AiryAi@{\frac{z+\zeta}{2}}+\frac{k^{2}}{4}\*\int_{z}^{\infty}\!\!\!\int_{z}^{\infty}K(z,s)\AiryAi@{\frac{s+t}{2}}\AiryAi@{\frac{t+\zeta}{2}}\diff{s}\diff{t}

K(z , zeta) = k*AiryAi((z + zeta)/(2))+((k)^(2))/(4)* int(int(K(z , s)* AiryAi((s + t)/(2))*AiryAi((t + zeta)/(2)), s = z..infinity), t = z..infinity)
K[z , \[Zeta]] == k*AiryAi[Divide[z + \[Zeta],2]]+Divide[(k)^(2),4]* Integrate[Integrate[K[z , s]* AiryAi[Divide[s + t,2]]*AiryAi[Divide[t + \[Zeta],2]], {s, z, Infinity}, GenerateConditions->None], {t, z, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Error
32.5.E2 w ( z ) = K ( z , z ) 𝑤 𝑧 𝐾 𝑧 𝑧 {\displaystyle{\displaystyle w(z)=K(z,z)}}
w(z) = K(z,z)

w(z) = K(z , z)
w[z] == K[z , z]
Skipped - no semantic math Skipped - no semantic math - -