Painlevé Transcendents - 32.3 Graphics

From testwiki
Revision as of 17:56, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
32.3.E2 d 2 u d x 2 = 3 u 5 + 2 x u 3 + ( 1 4 x 2 - ν - 1 2 ) u derivative 𝑢 𝑥 2 3 superscript 𝑢 5 2 𝑥 superscript 𝑢 3 1 4 superscript 𝑥 2 𝜈 1 2 𝑢 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}u}{{\mathrm{d}x}^{2}}=3u^{5}% +2xu^{3}+\left(\tfrac{1}{4}x^{2}-\nu-\tfrac{1}{2}\right)u}}
\deriv[2]{u}{x} = 3u^{5}+2xu^{3}+\left(\tfrac{1}{4}x^{2}-\nu-\tfrac{1}{2}\right)u

diff(u, [x$(2)]) = 3*(u)^(5)+ 2*x*(u)^(3)+((1)/(4)*(x)^(2)- nu -(1)/(2))*u
D[u, {x, 2}] == 3*(u)^(5)+ 2*x*(u)^(3)+(Divide[1,4]*(x)^(2)- \[Nu]-Divide[1,2])*u
Failure Failure
Failed [300 / 300]
Result: 3.043949625-3.665224602*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: 3.476962328-1.415224600*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[3.043949623616789, -3.6652245962155616]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.67792421983235, -4.031249999999999]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
32.3.E4 w ( x ) = 2 2 u k 2 ( 2 x , ν ) 𝑤 𝑥 2 2 superscript subscript 𝑢 𝑘 2 2 𝑥 𝜈 {\displaystyle{\displaystyle w(x)=2\sqrt{2}u_{k}^{2}(\sqrt{2}x,\nu)}}
w(x) = 2\sqrt{2}u_{k}^{2}(\sqrt{2}x,\nu)

w(x) = 2*sqrt(2)*(u[k])^(2)(sqrt(2)*x , nu)
w[x] == 2*Sqrt[2]*(Subscript[u, k])^(2)[Sqrt[2]*x , \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
32.3.E6 u 2 = - 1 3 x + 1 6 x 2 + 12 ν + 6 superscript 𝑢 2 1 3 𝑥 1 6 superscript 𝑥 2 12 𝜈 6 {\displaystyle{\displaystyle u^{2}=-\tfrac{1}{3}x+\tfrac{1}{6}\sqrt{x^{2}+12% \nu+6}}}
u^{2} = -\tfrac{1}{3}x+\tfrac{1}{6}\sqrt{x^{2}+12\nu+6}

(u)^(2) = -(1)/(3)*x +(1)/(6)*sqrt((x)^(2)+ 12*nu + 6)
(u)^(2) == -Divide[1,3]*x +Divide[1,6]*Sqrt[(x)^(2)+ 12*\[Nu]+ 6]
Skipped - no semantic math Skipped - no semantic math - -