Spheroidal Wave Functions - 30.12 Generalized and Coulomb Spheroidal Functions

From testwiki
Revision as of 17:53, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
30.12.E1 d d z ( ( 1 - z 2 ) d w d z ) + ( λ + α z + γ 2 ( 1 - z 2 ) - μ 2 1 - z 2 ) w = 0 derivative 𝑧 1 superscript 𝑧 2 derivative 𝑤 𝑧 𝜆 𝛼 𝑧 superscript 𝛾 2 1 superscript 𝑧 2 superscript 𝜇 2 1 superscript 𝑧 2 𝑤 0 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\left((1-z^{2})\frac% {\mathrm{d}w}{\mathrm{d}z}\right)+{\left(\lambda+\alpha z+\gamma^{2}(1-z^{2})-% \frac{\mu^{2}}{1-z^{2}}\right)w}=0}}
\deriv{}{z}\left((1-z^{2})\deriv{w}{z}\right)+{\left(\lambda+\alpha z+\gamma^{2}(1-z^{2})-\frac{\mu^{2}}{1-z^{2}}\right)w} = 0

diff(((1 - (z)^(2))*diff(w, z))+(lambda + alpha*z + (gamma)^(2)*(1 - (z)^(2))-((mu)^(2))/(1 - (z)^(2)))*w, z) = 0
D[((1 - (z)^(2))*D[w, z])+(\[Lambda]+ \[Alpha]*z + \[Gamma]^(2)*(1 - (z)^(2))-Divide[\[Mu]^(2),1 - (z)^(2)])*w, z] == 0
Failure Failure
Failed [300 / 300]
Result: 1.965860183+1.904969718*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 2.453469468+.8348874183e-1*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[3.299038105676658, 0.7500000000000002]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.2990381056766578, -2.7141016151377553]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
30.12.E2 d d z ( ( 1 - z 2 ) d w d z ) + ( λ + γ 2 ( 1 - z 2 ) - α ( α + 1 ) z 2 - μ 2 1 - z 2 ) w = 0 derivative 𝑧 1 superscript 𝑧 2 derivative 𝑤 𝑧 𝜆 superscript 𝛾 2 1 superscript 𝑧 2 𝛼 𝛼 1 superscript 𝑧 2 superscript 𝜇 2 1 superscript 𝑧 2 𝑤 0 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\left((1-z^{2})\frac% {\mathrm{d}w}{\mathrm{d}z}\right)+\left(\lambda+\gamma^{2}(1-z^{2})-\frac{% \alpha(\alpha+1)}{z^{2}}-\frac{\mu^{2}}{1-z^{2}}\right)w=0}}
\deriv{}{z}\left((1-z^{2})\deriv{w}{z}\right)+\left(\lambda+\gamma^{2}(1-z^{2})-\frac{\alpha(\alpha+1)}{z^{2}}-\frac{\mu^{2}}{1-z^{2}}\right)w = 0

diff(((1 - (z)^(2))*diff(w, z))+(lambda + (gamma)^(2)*(1 - (z)^(2))-(alpha*(alpha + 1))/((z)^(2))-((mu)^(2))/(1 - (z)^(2)))*w, z) = 0
D[((1 - (z)^(2))*D[w, z])+(\[Lambda]+ \[Gamma]^(2)*(1 - (z)^(2))-Divide[\[Alpha]*(\[Alpha]+ 1),(z)^(2)]-Divide[\[Mu]^(2),1 - (z)^(2)])*w, z] == 0
Failure Failure
Failed [300 / 300]
Result: 4.416822075-5.340220804*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 7.649621884+3.083488740*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[5.749999999999999, -6.495190528383291]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.749999999999999, -9.959292143521045]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data